
A	Func'onal	Introduc'on	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa'onal	purposes	
	

Thinking	Func'onally	
In	Java	or	C,	you	get	(most)	work	done	by	changing	something	
	
	
	
	
	
	
In	ML,	you	get	(most)	work	done	by	producing	something	new	

temp	=	pair.x;	
pair.x	=	pair.y;	
pair.y	=	temp;	 commands	modify	or	change	an	

exis'ng	data	structure	(like	pair)	

let	
		(x,y)	=	pair	
in	
		(y,x)	

you	analyze	exis'ng	data	(like	pair)	
and	you	produce	new	data	(y,x)	

2	

This	simple	switch	in	perspec've	can	change	the	way	you		
think		

about	programming	and	problem	solving.	

3	

Thinking	Func'onally	

impera've	code:	
	
	
	
	
•  outputs	are	irrelevant!	
•  output	is	not	func9on	of	input	
•  vola9le	
•  unrepeatable	
•  parallelism	hidden	
•  harder	to	test	
•  harder	to	compose	

pure,	func'onal	code:	
	
	
	
	
•  outputs	are	everything!	
•  output	is	func9on	of	input	
•  persistent	
•  repeatable	
•  parallelism	apparent	
•  easier	to	test	
•  easier	to	compose	

temp	=	pair.x;	
pair.x	=	pair.y;	
pair.y	=	temp;	

let	(x,y)	=	pair	in	
(y,x)	

4	

Why	OCaml?	
5	

Small,	orthogonal	core	based	on	the	lambda	calculus.	
–  Control	is	based	on	(recursive)	func'ons.	
–  Instead	of	for-loops,	while-loops,	do-loops,	iterators,	etc.	

•  can	be	defined	as	library	func'ons.	
–  Makes	it	easy	to	define	seman'cs		

Supports	first-class,	lexically-scoped,	higher-order	procedures	
–  a.k.a.	first-class	func'ons	or	closures	or	lambdas.	
–  first-class:		func'ons	are	data	values	like	any	other	data	value	

•  like	numbers,	they	can	be	stored,	defined	anonymously,	...			
–  lexically-scoped:		meaning	of	variables	determined	sta'cally.	
–  higher-order:		func'ons	as	arguments	and	results	

•  programs	passed	to	programs;	generated	from	programs	

These	features	also	found	in	Racket,	Haskell,	SML,	F#,	Clojure,	

Why	OCaml?	
6	

Sta'cally	typed:		debugging	and	tes'ng	aid	
–  compiler	catches	many	silly	errors	before	you	can	run	the	code.	

•  A	type	is	worth	a	thousand	tests	(start	at	6:20):			
–  h]ps://www.youtube.com/watch?v=q1Yi-WM7XqQ	

–  Java	is	also	strongly,	sta'cally	typed.	
–  Scheme,	Python,	Javascript,	etc.	are	all	strongly,	dynamically	
typed	–	type	errors	are	discovered	while	the	code	is	running.	

Strongly	typed:		compiler	enforces	type	abstrac'on.	
–  cannot	cast	an	integer	to	a	record,	func'on,	string,	etc.	

•  so	we	can	u'lize	types	as	capabili9es;	crucial	for	local	reasoning	
–  C/C++	are	weakly-typed	(sta'cally	typed)	languages.		The	compiler	
will	happily	let	you	do	something	smart	(more	o?en	stupid).			

Type	inference:		compiler	fills	in	types	for	you	

Installing,	running	Ocaml	
7	

•  OCaml	comes	with	compilers:	
–  “ocamlc”	–	fast	bytecode	compiler	
–  “ocamlopt”	–	op'mizing,	na've	code	compiler	
–  “ocamlbuild	–	a	nice	wrapper	that	computes	dependencies	

•  And	an	interac've,	top-level	shell:	
–  occasionally	useful	for	trying	something	out.	
–  “ocaml”	at	the	prompt.	

•  And	many	other	tools	
–  e.g.,	debugger,	dependency	generator,	profiler,	etc.	

•  See	the	course	web	pages	for	installa'on	pointers	
–  also	OCaml.org	

Edi'ng	Ocaml	Programs	
8	

•  Many	op'ons:		pick	your	own	poison	
–  Emacs	

•  what	I’ll	be	using	in	class.	
•  good	but	not	great	support	for	OCaml.	
•  on	the	other	hand,	it’s	s'll	the	best	code	editor	I’ve	used	

–  that	may	be	because	I'm	old	and	stuck	in	my	ways	:-)	
•  (extensions	wri]en	in	elisp	–	a	func'onal	language!)	

–  OCaml	IDE	
•  integrated	development	environment	wri]en	in	Ocaml.	
•  haven’t	used	it	much,	so	can’t	comment.	

–  Eclipse	
•  I’ve	put	up	a	link	to	an	Ocaml	plugin	
•  I	haven't	tried	it	but	others	recommend	it	

–  Sublime	
•  A	lot	of	students	seem	to	gravitate	to	this	

	

XKCD	on	Editors	

9	

AN	INTRODUCTORY	EXAMPLE	
(OR	TWO)	

10	

OCaml	Compiler	and	Interpreter	
•  Demo:	

–  emacs	
–  ml	files	
–  wri'ng	simple	programs:	hello.ml,	sum.ml	
–  simple	debugging	and	unit	tests	
–  ocamlc	compiler	
	

11	

A	First	OCaml	Program	

hello.ml:

print_string “Hello COS 326!!\n";;

12	

print_string “Hello COS 326!!\n";;

A	First	OCaml	Program	

hello.ml:

a	func'on	 its	string	argument	
enclosed	in	"..."

top-level	
expressions	
terminated	by	;;	

13	

A	First	OCaml	Program	

print_string “Hello COS 326!!\n";;

$ ocamlbuild hello.d.byte
$./hello.d.byte
Hello COS 326!!
$

hello.ml:

compiling and running hello.ml:

.d	for	debugging	
(other	choices	.p	for	profiled;	or	none)	

.byte	for	interpreted	bytecode	
(other	choices	.na've	for	machine	code)	

14	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n";;

15	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n";;

16	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
#use "hello.ml";;
hello cos326!!
-  : unit = ()

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n";;

17	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
#use "hello.ml";;
hello cos326!!
-  : unit = ()
#quit;;
$

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n";;

18	

A	Second	OCaml	Program	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

a	comment	
(*	...	*)	sumTo8.ml:

19	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

the	name	of	the	func'on	being	defined	

the	keyword	“let”	begins	a	defini'on	
the	keyword	“rec”	indicates	the	defini'on	is	recursive	

top-level	
declara'on	
ends	with	
“;;”	

sumTo8.ml:

20	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

result	type	int	

argument		
named	n	
with	type	int	

sumTo8.ml:

21	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

deconstruct	the	value	n	
using	pa]ern	matching	

data	to	be	
deconstructed	
appears	
between	
key	words	
“match”	and	
“with”	

sumTo8.ml:

22	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

deconstructed	data	matches	one	of	2	cases:	
(i)	the	data	matches	the	pa]ern	0,	or	(ii)	the	data	matches	the	variable	pa]ern	n	

ver'cal	bar	"|"	separates	the	alterna've	pa]erns	

sumTo8.ml:

23	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

Each	branch	of	the	match	statement	constructs	a	result	

construct	
the	result	0	
	

construct		
a	result	
using	a	
recursive	
call	to	sumTo	
	

sumTo8.ml:

24	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)
;;

print_int (sumTo 8);;
print_newline();;

A	Second	OCaml	Program	

print	the	
result	of		
calling	
sumTo	on	8	
	

print	a	
new	line	

sumTo8.ml:

25	

OCAML	BASICS:	
EXPRESSIONS,	VALUES,	SIMPLE	
TYPES	

26	

Expressions,	Values,	Types	
•  Expressions	are	computa'ons	

–  2	+	3	is	a	computa'on	

•  Values	are	the	results	of	computa'ons	
–  5	is	a	value	

•  Types	describe	collec'ons	of	values	and	the	computa'ons	
that	generate	those	values	
–  int	is	a	type	

–  values	of	type	int	include		
•  0,	1,	2,	3,	…,	max_int	
•  -1,	-2,	…,	min_int	

27	

More	simple	types,	values,	opera'ons	
28	

Type: 	 	Values: 	 	 	Expressions:	
int -2, 0, 42 42 * (13 + 1)
float 3.14, -1., 2e12 (3.14 +. 12.0) *. 10e6

char ’a’, ’b’, ’&’ int_of_char ’a’

string "moo", "cow" "moo" ^ "cow"
bool true, false if true then 3 else 4

unit () print_int 3

For	more	primi've	types	and	func'ons	over	them,		
see	the	OCaml	Reference	Manual	here:	

	
h]p://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html	

Not	every	expression	has	a	value	
29	

Expression:	
42 * (13 + 1) evaluates to 588
(3.14 +. 12.0) *. 10e6 ↦ 151400000.

int_of_char ’a’ ↦ 97

"moo" ^ "cow" ↦ “moocow"
if true then 3 else 4 ↦ 3
print_int 3 ↦ ()

1 + "hello" does not evaluate!

Language	Defini'on	
•  There	are	a	number	of	ways	to	define	a	programming	language	
•  In	this	class,	we	will	briefly	inves'gate:	

–  Syntax	
–  Evalua'on	
–  Type	checking	

•  Standard	ML,	a	very	close	rela've	of	OCaml,	has	a	full	defini'on	
of	each	of	these	parts	and	a	number	of	proofs	of	correctness	
–  For	more	on	this	theme,	see	COS	441/510	

•  The	OCaml	Manual	fleshes	out	the	syntax,	evalua'on	and	type	
checking	rules	informally	

30	

OCAML	BASICS:	
CORE	EXPRESSION	SYNTAX	

31	

Core	Expression	Syntax	
32	

The	simplest	OCaml	expressions	e	are:	
•  values 	 	 	numbers,	strings,	bools,	...	
•  id 	 	 	 	variables	(x,	foo,	...)	
•  e1	op	e2 	 	 	operators	(x+3,	...)	
•  id	e1	e2	…	en	 	 	func9on	call	(foo	3	42)	
•  let	id	=	e1	in	e2 	 	local	variable	decl.	
•  if	e1	then	e2	else	e3				 	a	condi9onal	
•  (e) 	 	 	 	a	parenthesized	expression	
•  (e	:	t) 	 	 	an	expression	with	its	type	

A	note	on	parentheses	
33	

In	most	languages,	arguments	are	parenthesized	&	separated	by	commas:			
		
 f(x,y,z) sum(3,4,5)

	
In	OCaml,	we	don’t	write	the	parentheses	or	the	commas:		

	
 f x y z sum 3 4 5

	
But	we	do	have	to	worry	about	grouping.		For	example,	

 f x y z
f x (y z)

	
The	first	one	passes	three	arguments	to	f	(x,	y,	and	z)	
The	second	passes	two	arguments	to	f	(x,	and	the	result	of	applying	the	

func'on	y	to	z.)			
	

OCAML	BASICS:	
TYPE	CHECKING	

34	

Type	Checking	
•  Every	value	has	a	type	and	so	does	every	expression	
•  This	is	a	concept	that	is	familiar	from	Java	but	it	becomes	

more	important	when	programming	in	a	func'onal	language	
•  The	type	of	an	expression	is	determined	by	the	type	of	its	

subexpressions	
•  We	write	(e	:	t)	to	say	that	expression	e	has	type	t.	eg:	

	
2	:	int 	 	 	 	"hello"	:	string	
	
2	+	2	:	int 	 	 	 	"I	say	"	^	"hello"	:	string	

35	

Type	Checking	Rules	
•  There	are	a	set	of	simple	rules	that	govern	type	checking	

–  programs	that	do	not	follow	the	rules	will	not	type	check	and	
O’Caml	will	refuse	to	compile	them	for	you	(the	nerve!)	

–  at	first	you	may	find	this	to	be	a	pain	…	

•  But	types	are	a	great	thing:	
–  they	help	us	think	about	how	to	construct	our	programs	
–  they	help	us	find	stupid	programming	errors		
–  they	help	us	track	down	compa'bility	errors	quickly	when	we	
edit	and	maintain	our	code	

–  they	allow	us	to	enforce	powerful	invariants	about	our	data	
structures	

36	

Type	Checking	Rules	
•  Example	rules:	

	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

37	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	 (4)	

38	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

39	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

40	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

41	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

42	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
Therefore,	(2	+	3)	*	5	:	int 	(By	rule		4	and	our	previous	work)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

FYI:		This	is	a	formal	proof	
that	the	expression	is	well-

typed!	

43	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspec've:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	????				*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

44	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspec've:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

45	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspec've:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				(add_one	17)				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

46	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

47	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;

48	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

49	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

50	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#quit;;
$

51	

Type	Checking	Rules	
•  Example	rules:	

	
•  Viola'ng	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

"hello"	:	string 	 	(By	rule		2)	
1	:	int 	 	 	(By	rule		1)	
1	+	"hello"	:	?? 	 	(NO	TYPE!		Rule	3	does	not	apply!)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

52	

•  Viola'ng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Type	Checking	Rules	
•  Viola'ng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

53	

Type	Checking	Rules	
•  Viola'ng	the	rules:	

•  A	possible	fix:	

•  One	of	the	keys	to	becoming	a	good	ML	programmer	is	to	
understand	type	error	messages.			

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

54	

Type	Checking	Rules	
•  More	rules:	

	

•  Using	the	rules:	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

if	????	then		????		else		????		:	int 		

(9)	

true	:	bool		

false	:	bool	(8)	

(7)	

55	

Type	Checking	Rules	
•  More	rules:	

	

•  Using	the	rules:	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

if	true	then		????		else		????		:	int 		

(9)	

true	:	bool		

false	:	bool	(8)	

(7)	

56	

Type	Checking	Rules	
•  More	rules:	

	

•  Using	the	rules:	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

if	true	then						7				else		????		:	int 		

(9)	

true	:	bool		

false	:	bool	(8)	

(7)	

57	

Type	Checking	Rules	
•  More	rules:	

	

•  Using	the	rules:	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

if	true	then						7				else				8						:	int 		

(9)	

true	:	bool		

false	:	bool	(8)	

(7)	

58	

Type	Checking	Rules	
•  More	rules:	

	

•  Viola'ng	the	rules	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

if	false	then						"1"				else				2						:	???? 		

(9)	

true	:	bool		

false	:	bool	(8)	

(7)	

types	don't	agree	--	one	is	a	string	and	one	is	an	int	

59	

Type	Checking	Rules	
•  Viola'ng	the	rules:	

if true then "1" else 2;;
Error: This expression has type int but an
expression was expected of type string

60	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excep'on?	

3 / 0 ;;
Exception: Division_by_zero.

61	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excep'on?	
–  In	general,	detec'ng	a	divide-by-zero	error	requires	we	know	that	
the	divisor	evaluates	to	0.	

–  In	general,	deciding	whether	the	divisor	evaluates	to	0	requires	
solving	the	hal'ng	problem:	

•  There	are	type	systems	that	will	rule	out	divide-by-zero	errors,	but	
they	require	programmers	supply	proofs	to	the	type	checker		

3 / 0 ;;
Exception: Division_by_zero.

3 / (if turing_machine_halts m then 0 else 1);;

62	

Isn’t	that	chea'ng?	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	
	
(3	/	0)			is	well	typed.			Does	it	“go	wrong?”		Answer:	No.	
	
“Go	wrong”	is	a	technical	term	meaning,	“have	no	defined	
seman'cs.”		Raising	an	excep'on	is	perfectly	well	defined	
seman'cs,	which	we	can	reason	about,	which	we	can	handle	in	
ML	with	an	excep'on	handler.	
	
So,	it’s	not	chea'ng.	
	
(Discussion:	why	do	we	make	this	dis9nc9on,	anyway?)	

63	

Type	Soundness	
“Well	typed	programs	do	not	go	wrong”	

	
Programming	languages	with	this	property	have		
sound	type	systems.		They	are	called	safe	languages.	
	
Safe	languages	are	generally	immune	to	buffer	overrun	
vulnerabili'es,	unini'alized	pointer	vulnerabili'es,	etc.,	etc.	
(but	not	immune	to	all	bugs!)	
	
Safe	languages:		ML,	Java,	Python,	…	
	
Unsafe	languages:		C,	C++,	Pascal	

64	

Well	typed	programs	do	not	go	wrong	
•  Viola'ng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Robin	Milner	

Turing	Award,	1991	
	
“For	three	dis'nct	and	complete	achievements:		
	
1. 		LCF,	the	mechaniza'on	of	Sco]'s	Logic	of	Computable	Func'ons,	probably	
the	first	theore'cally	based	yet	prac'cal	tool	for	machine	assisted	proof	
construc'on;	

2. 		ML,	the	first	language	to	include	polymorphic	type	inference	together	with	
a	type-safe	excep'on-handling	mechanism;	

3. 		CCS,	a	general	theory	of	concurrency.	

In	addi'on,	he	formulated	and	strongly	advanced	full	abstrac'on,	the	study	of	
the	rela'onship	between	opera'onal	and	denota'onal	seman'cs.”	

65	

Also	in	1978…	

1978	
.	
.	
.	

2015	

37	years	

1941	
.	
.	
.	
	

37	years	
First	von	Neumann	computer	
First	programming	languages	

Func'onal	programming	languages	
(FP,	Scheme,	ML)	

Transistors!	

most	of	you	were	born	

66	

OVERALL	SUMMARY:	
A	SHORT	INTRODUCTION	TO	
FUNCTIONAL	PROGRAMMING	

67	

OCaml	
OCaml	is	a	func9onal	programming	language	
	

–  Java	gets	most	work	done	by	modifying		data	

–  OCaml	gets	most	work	done	by	producing	new,	immutable	data	

OCaml	is	a	typed	programming	language		

–  the	type	of	an	expression	correctly	predicts	the	kind	of	value	
the	expression	will	generate	when	it	is	executed	

–  types	help	us	understand	and	write	our	programs	
–  the	type	system	is	sound;	the	language	is	safe	

68	

