A Functional Introduction

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes



[ Thinking Functionally

In Java or C, you get (most) work done by changing something

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

T~

commands modify or change an
existing data structure (like pair)

In ML, you get (most) work done by producing something new

let

(x,y) = pair
in

(y,x)

T~

you analyze existing data (like pair)
and you produce new data (y,x)



This simple switch in perspective can change the way you
think
about programming and problem solving.



[ Thinking Functionally ]

pure, functional code: imperative code:

let (X,Y) = pair in temp = pair.x;

o e
e outputs are everything! * outputs are irrelevant!
e output is function of input e output is not function of input
* persistent * volatile
* repeatable * unrepeatable
* parallelism apparent * parallelism hidden
e eaqsier to test * harder to test

e easier to compose * harder to compose



[ Why OCaml?

Small, orthogonal core based on the lambda calculus.
— Control is based on (recursive) functions.
— Instead of for-loops, while-loops, do-loops, iterators, etc.
* can be defined as library functions.

— Makes it easy to define semantics

Supports first-class, lexically-scoped, higher-order procedures
— a.k.a. first-class functions or closures or lambdas.
— first-class: functions are data values like any other data value
* like numbers, they can be stored, defined anonymously, ...
— lexically-scoped: meaning of variables determined statically.
— higher-order: functions as arguments and results

* programs passed to programs; generated from programs

These features also found in Racket, Haskell, SML, F#, Clojure, ....



Why OCaml?

Statically typed: debugging and testing aid
— compiler catches many silly errors before you can run the code.
* Atypeis worth a thousand tests (start at 6:20):
— https://www.youtube.com/watch?v=q1Yi-WM7XgQ

— Java is also strongly, statically typed.

— Scheme, Python, Javascript, etc. are all strongly, dynamically
typed — type errors are discovered while the code is running.

Strongly typed: compiler enforces type abstraction.

— cannot cast an integer to a record, function, string, etc.
* so we can utilize types as capabilities; crucial for local reasoning

— C/C++ are weakly-typed (statically typed) languages. The compiler
will happily let you do something smart (more often stupid).

Integer Functor Ord Char
5 . Monad
lpl'e_ler the Enum
strong, static ) '

type.

Bool
Int
>

Type inference: compiler fills in types for you

Num
Bounded
Integral ()
Maybe String Ratio Float



Installing, running Ocaml

OCaml comes with compilers:
— “ocamlc” —fast bytecode compiler
— “ocamlopt” — optimizing, native code compiler
— “ocamlbuild — a nice wrapper that computes dependencies
And an interactive, top-level shell:
— occasionally useful for trying something out.
— “ocaml” at the prompt.
And many other tools
— e.g., debugger, dependency generator, profiler, etc.
See the course web pages for installation pointers

— also OCaml.org



Editing Ocaml| Programs

 Many options: pick your own poison
— Emacs
* what I'll be using in class.
* good but not great support for OCaml.
* on the other hand, it’s still the best code editor I've used
— that may be because I'm old and stuck in my ways :-)
* (extensions written in elisp — a functional language!)
— OCaml IDE
* integrated development environment written in Ocaml.
* haven’t used it much, so can’t comment.
— Eclipse
* |’'ve put up a link to an Ocaml plugin
* | haven't tried it but others recommend it
— Sublime
* Alot of students seem to gravitate to this



XKCD on Editors

nano? REAL | | HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRAMMERS [ | EXCUSE ME, BUT
PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | USE AMAGNETIZED | | REAL PROGRAMMERS
USE emocs USE vim. VSE ed. USE cat. NEEDLE AND A USE BUTTERFLIES.
/ [ } STEAD\/’ HAND.

et iR 4

THE DISTURBANCE RIPPLES ~ WHICH ACT AS LENSES THAT NICE.

THEY OPEN THEIR OUTWARD, CHANGING THE FLOW  DEFLECT INCOMING COSMIC :
, COURSE, THERES AN EMACS
HANDS AND LET THE | OF TH4E EDDY CURRENTS RAYS, FOCUSING THEM TO COHMAND TO DO THAT.
DELICATE WINGS FLAPONCE..| 1N THE UPPER PrmoSPHERE STRIKE THE DRIVE PLATTER ,
A = AND FLIP THE DESIRED) BIT, OH YEAH! GOOD O

Cch M-butterfly.

Wﬁiﬁ

DAMIT, EMACS.

THESE CHUSE P’lOﬂENTAR‘( POO(ETS
OF HIGHER-PRESSURE. AIRTO FORM,




AN INTRODUCTORY EXAMPLE
(OR TWO)



OCaml Compiler and Interpreter

Demo:

emacs
ml files

writing simple programs: hello.ml, sum.ml
simple debugging and unit tests

ocamlc compiler

11



A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;

12



13

A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;
A N S

\

a function its string argument
enclosedin™..."

top-level
expressions
terminated by ;;



A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;

compiling and running hello.ml:

S ocamlbuild hello.d.byte
S ./hello.d.byte

Hello COS 326!

$

.d for debugging .byte for interpreted bytecode
(other choices .p for profiled; or none) (other choices .native for machine code)

14



15

A First OCaml Program ]

hello.ml:

print string “Hello COS 326!!\n";;

interpreting and playing with hello.ml:

S ocaml
Objective Caml Version 3.12.0

id




A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;

interpreting and playing with hello.ml:

S ocaml

Objective Caml Version 3.12.0
# 3 + 1;;
- : int = 4




A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;

interpreting and playing with hello.ml:

$ ocaml
Objective Caml Version 3.12.0
# 3+ 1;;
- : 1int = 4
# #use "hello.ml";:;
hello cos326!!
- : unit = ()

i

17



A First OCaml Program

hello.ml:

print string “Hello COS 326!!\n";;

interpreting and playing with hello.ml:

$ ocaml
Objective Caml Version 3.12.0
# 3+ 1;;
- : 1int = 4
# #use "hello.ml";:;
hello cos326!!
- : unit = ()
# #quit;;
$

18



A Second OCaml Program

sumTo8.ml:

a comment

(* ...

k////

(* sum the numbers from 0O to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -=> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

*)

19



[ A Second OCaml Program ]

the name of the function being defined

sumTo8.ml:

(* sum the numbers from 0O to n

preconditvion: n must be a natural number
*)

let rec sumTo (n:int) : int =
/ﬂ match n with
0 -> 0
| n -=> n + sumTo (n-1) topJeveI
RS declaration
ends with

print int (sumTo 8);; “ .»
print newline();; "

the keyword “let” begins a definition
the keyword “rec” indicates the definition is recursive



21

A Second OCaml Program

sumTo8.ml:

(* sum the numbers from 0O to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -=> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

" result type int

argument
" named n
with type int




22

A Second OCaml Program

deconstruct the value n
using pattern matching

sumTo8.ml:

from O to n
n must be a natural number

(* sum the number
preconditio
*)
let rec sumTo (HW
match n“with
0O -=> 0
| n -=> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

— data to be
deconstructed
appears
between

key words
“match” and
“with”




[ A Second OCaml Program

vertical bar "|" separates the alternative patterns

sumTo8.ml:

(* sum the numbers from 0O to n

precondition: n must be a natural number
*)

let rec sumTo (n:int) : int =

match n with
0O —> 0

n -> n + sumTo (n-1)

rint int (sumTo 8);;
print newline();;

deconstructed data matches one of 2 cases:
(i) the data matches the pattern O, or (ii) the data matches the variable pattern n

23



24

A Second OCaml Program

Each branch of the match statement constructs a result

sumTo8.ml:

(* sum the numbers from 0O to n

precondition: n must be a natural number
*)

let rec sumTo (n:int)
match n with

0 -> 0

| n -=> n + sumTo (n-1)

" \

print int (sumTo 8);;
print newline();;

construct
the result O

construct

a result
_using a
recursive

call to sumTo




A Second OCaml Program

sumTo8.ml:

(* sum the numbers from 0O to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -=> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

e\\\\\\\\\\\\\\\\

print the
result of
calling
sumTo on 8

print a
new line

25



OCAML BASICS:
EXPRESSIONS, VALUES, SIMPLE
TYPES



Expressions, Values, Types

Expressions are computations
— 2+ 3 is a computation

Values are the results of computations

— 5is avalue

Types describe collections of values and the computations
that generate those values

— intis a type

— values of type int include
* 0,1,2,3, .., max_int
e -1,-2, ..., min_int

27



More simple types, values, operations

Type: Values: Expressions:

int -2, 0, 42 42 * (13 + 1)

float 3.14, -1., 2el2 (3.14 +. 12.0) *. 10e6
char a’, 'b", &' int of char ’a’

string "moo", "cow" "moo" ~ "cow"

bool true, false i1f true then 3 else 4
unit () print int 3

For more primitive types and functions over them,
see the OCaml Reference Manual here:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

28



Not every expression has a value

Expression:

42 * (13 + 1) evaluates to 588

(3.14 +. 12.0) *. 10e6 - 151400000.
int of char ’a’ - 97

"moo" ~ "cow" - “moocow"
1f true then 3 else 4 - 3

print int 3 - ()

1 + "hello" does not evaluate!

29



30

Language Definition ]

There are a number of ways to define a programming language

In this class, we will briefly investigate:

— Syntax

— Evaluation

— Type checking
Standard ML, a very close relative of OCaml, has a full definition
of each of these parts and a number of proofs of correctness

— For more on this theme, see COS 441/510

The OCaml Manual fleshes out the syntax, evaluation and type
checking rules informally



OCAML BASICS:
CORE EXPRESSION SYNTAX



Core Expression Syntax

The simplest OCaml expressions e are:

e values numbers, strings, bools, ...
e id variables (x, foo, ...)

* e, 0pe, operators (x+3, ...)

* ideje,..e, function call (foo 3 42)

* letid=e,ine, local variable decl.

* ife thene, else e; a conditional

* (e) a parenthesized expression

e (e:t) an expression with its type

32



33

[ A note on parentheses ]

In most languages, arguments are parenthesized & separated by commas:

f(x,y,2z) sum(3,4,5)
In OCaml, we don’t write the parentheses or the commas:

f xy z sum 3 4 5

But we do have to worry about grouping. For example,

fxy z
f x (y z)
The first one passes three arguments to f (x, y, and z)

The second passes two arguments to f (x, and the result of applying the
functiony to z.)



OCAML BASICS:
TYPE CHECKING



35

Type Checking ]

Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes
more important when programming in a functional language

The type of an expression is determined by the type of its
subexpressions
We write (e : t) to say that expression e has type t. eg:

2 :int "hello" : string

2+2:int "I say " A "hello" : string



Type Checking Rules

* There are a set of simple rules that govern type checking

programs that do not follow the rules will not type check and
O’Caml will refuse to compile them for you (the nerve!)

at first you may find this to be a pain ...

But types are a great thing:

they help us think about how to construct our programs
they help us find stupid programming errors

they help us track down compatibility errors quickly when we
edit and maintain our code

they allow us to enforce powerful invariants about our data
structures

36



Type Checking Rules

(1)

(2)

Example rules:
O0:int

"abc" : string

(and similarly for any other integer constant n)

(and similarly for any other string constant "...

)

37



38

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int

thenel +e2:int then el * e2 :int



39

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringand e2 : string (6) ife:int

then el ™ e2 : string then string_of inte :string



40

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

* Using the rules:

2 :intand 3 :int. (By rule 1)



41

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)



42

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)



43

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly fg

FYIl: This is a formal proof
that the expression is well-
typed!

(3) ifel:intande2:int
thenel +e2:int

(5) ifel:stringande2 :string
then el M e2 : string

e :string

* Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)

Therefore, (2 + 3) *5:int (By rule 4 and our previous work)



44

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Another perspective:

P A & o o :int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



45

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Another perspective:

7 *oPPP? :int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



46

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Another perspective:

7 * (add_one 17) : int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



Type Checking Rules

* You can always start up the OCaml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0

i

47



Type Checking Rules

* You can always start up the OCaml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
# 3+ 1;;

48



Type Checking Rules

* You can always start up the OCaml interpreter to find out a

type of a simple expression:

press
return

and you
find out
the type
and the
value

e

/ﬁ///7

S ocaml

Objective Caml Version 3.12.0

# 3 + 1;;
- : 1int = 4

49



Type Checking Rules

* You can always start up the OCaml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
# 3+ 1;;
- int = 4
# “hello ” ~ “world”;;
press - : string = “hello world”
#
return /
and you
find out —
the type
and the

value



Type Checking Rules

* You can always start up the OCaml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
3+ 1
int = 4
“‘hello ” ~ “world”;;
string = “hello world”
#quit;;

U H= | H= |

51



52

Type Checking Rules ]

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2 :int thenel *e2:int
(5) ifel:stringand e2 : string (6) ife:int
then el ™ e2 : string then string_of inte :string

Violating the rules:

"hello" : string (By rule 2)
1:int (By rule 1)
1+ "hello" : ?? (NO TYPE! Rule 3 does not apply!)



Type Checking Rules

* Violating the rules:

# "hello" + 1;;

Error: This expression has type string but an
expression was expected of type int

 The type error message tells you the type that was expected
and the type that it inferred for your subexpression

* By the way, this was one of the nonsensical expressions that
did not evaluate to a value

* |tis agood thing that this expression does not type check!

“Well typed programs do not go wrong”
Robin Milner, 1978

53



Type Checking Rules

* Violating the rules:

# "hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

* A possible fix:

# "hello"™ ~ (string of int 1);;
- : string = "hellol"

One of the keys to becoming a good ML programmer is to
understand type error messages.

54



OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

55



56

[ OCaml |

OCaml is a functional programming language

— Java gets most work done by modifying data

— OCaml gets most work done by producing new, immutable data

OCaml is a typed programming language

— the type of an expression correctly predicts the kind of value
the expression will generate when it is executed

— types help us understand and write our programs
— the type system is sound; the language is safe



