
COS 318: Operating Systems

Overview

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Important Times

u  Precepts:
l  Mon: 7:30-8:20pm, 105 CS building
l  This week (9/19: TODAY):

•  Tutorial of Assembly programming and kernel debugging

u  Project 1
l  Design review:

•  9/26: 1:30pm – 6:30pm (Signup online), 010 Friend Center
l  Project 1 due: 10/02 at 11:55pm

u  To do:
l  Make sure you have your project partner

3

Today

u  Overview of OS functionality
u  Overview of OS components

4

Hardware of A Typical Computer

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

5

A Typical Computer System

Memory CPU

CPU

. . .

OS
Apps
Data

Network

Application

Operating System

ROM

BIOS

6

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

7

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

8

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved” when
program is loaded

9

Application: How it’s created

u  gcc can compile, assemble, and link together
u  Compiler (part of gcc) compiles a program into assembly
u  Assembler compiles assembly code into relocatable object file
u  Linker links object files into an executable
u  For more information:

l  Read man page of a.out, elf, ld, and nm
l  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

10

Application: How it’s executed

u  On Unix, “loader” does the job
l  Read an executable file
l  Layout the code, data, heap and stack
l  Dynamically link to shared libraries
l  Prepare for the OS kernel to run the application

a.out loader *.o, *.a ld Application

Shared
library

11

What an executable application looks like

u  Four segments
l  Code/Text – instructions
l  Data – global variables
l  Stack
l  Heap

u  Why:
l  Separate code and data?
l  Have stack and heap go

towards each other?

Stack

Heap

Initialized data

Code

2n -1

0

In More Detail

12

13

Responsibilities for the segments

u  Stack
l  Layout by ?
l  Allocated/deallocated by ?
l  Names are absolute/relative? Local/global?

u  Heap
l  Who sets the starting address?
l  Allocated/deallocated by ?
l  How do application programs manage it?

u  Global data/code
l  Who allocates?
l  Who defines names and references?
l  Who translates references?
l  Who relocates addresses?
l  Who lays them out in memory?

14

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

Must Support Multiple Applications

u  In multiple windows
l  Browser, shell, powerpoint, word, …

u  Use command line to run multiple applications

% ls –al | grep ‘^d’
% foo &
% bar &

15

16

Multiple Application Processes

Application

Libraries

Machine-dependent layer

Portable OS Layer

Application

Libraries

Application

Libraries
…

17

OS Service Examples

u  Examples that are not provided at user level
l  System calls: file open, close, read and write
l  Control the CPU so that users won’t cause problems

•  while (1) ;

l  Protection:
•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

u  System calls are typically traps or exceptions
l  System calls are implemented in the kernel
l  Application “traps” to kernel to invoke a system call
l  When finishing the service, a system returns to the user code

18

Interrupts

u  Raised by external events
u  Interrupt handler is in the

kernel
l  Switch to another process
l  Overlap I/O with CPU
l …

u  Eventually resume the
interrupted process

u  A way for CPU to wait for
long-latency events (like I/O)
to happen

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

19

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

20

Applications

Software “Onion” Layers

Libraries

OS Services

Device

Driver

Kernel

User and Kernel
boundary

HW

21

Today

u  Overview of OS functionality
u  Overview of OS components

l  Process management
l  Memory management
l  I/O device management
l  File System
l  Window System
l  Bootstrap

22

Processor Management

u  Goals
l  Overlap between I/O and

computation
l  Time sharing
l  Multiple CPU allocation

u  Issues
l  Do not waste CPU resources
l  Synchronization and mutual

exclusion
l  Fairness and deadlock

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

23

Memory Management

u  Goals
l  Support for programs to be

written easily
l  Allocation and management
l  Transfers from and to

secondary storage
u  Issues

l  Efficiency & convenience
l  Fairness
l  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

24

I/O Device Management

u  Goals
l  Interactions between

devices and applications
l  Ability to plug in new

devices
u  Issues

l  Efficiency
l  Fairness
l  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

25

File System

u  Goals:
l  Manage disk blocks
l  Map between files and disk blocks

u  Typical file system calls
l  Open a file with authentication
l  Read/write data in files
l  Close a file

u  Issues
l  Reliability
l  Safety
l  Efficiency
l  Manageability

User 1 User n . . .

File system services

File File . . .

26

Window Systems

u  Goals
l  Interacting with a user
l  Interfaces to examine and

manage apps and the system
u  Issues

l  Inputs from keyboard, mouse,
touch screen, …

l  Display output from applications
and systems

l  Where is the Window System?
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

27

Bootstrap

u  Power up a computer
u  Processor reset

l  Set to known state
l  Jump to ROM code

(BIOS is in ROM)
u  Load in the boot loader from

stable storage
u  Jump to the boot loader
u  Load the rest of the operating

system
u  Initialize and run

Boot loader

OS sector 1

OS sector 2

OS sector n

. . .

Boot loader

28

Summary

u  Overview of OS functionality
l  Layers of abstraction
l  Services to applications
l  Resource management

u  Overview of OS components
l  Processor management
l  Memory management
l  I/O device management
l  File system
l  Window system
l …

Appendix: Booting a System

29

30

Bootstrap

u  Power up a computer
u  Processor reset

l  Set to known state
l  Jump to ROM code (BIOS is

in ROM)
u  Load in the boot loader from

stable storage
u  Jump to the boot loader
u  Load the rest of the operating

system
u  Initialize and run

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

. . .

Boot
loader

COS318 Lec 2 31

System Boot

u Power on (processor waits until Power Good
Signal)

u Processor jumps to a fixed address, which is the
start of the ROM BIOS program

COS318 Lec 2 32

u POST (Power-On Self-Test)
•  Stop booting if fatal errors, and report

u  Look for video card and execute built-in ROM
BIOS code (normally at C000h)

u  Look for other devices ROM BIOS code
u Display startup screen

•  BIOS information

u Execute more tests
•  memory
•  system inventory

ROM Bios Startup Program (1)

COS318 Lec 2 33

ROM BIOS startup program (2)

u  Look for logical devices
l  Label them

•  Serial ports
•  COM 1, 2, 3, 4

•  Parallel ports
•  LPT 1, 2, 3

l  Assign each an I/O address and interrupt numbers

u Detect and configure Plug-and-Play (PnP) devices
u Display configuration information on screen

COS318 Lec 2 34

ROM BIOS startup program (3)

u Search for a drive to BOOT from
u  Load code in boot sector
u Execute boot loader
u Boot loader loads program to be booted

•  If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

u Transfer control to loaded program

