5lﬂ

COS 318: Operating Systems

Overview

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

5lﬂ

Important Times

Precepts:
e Mon: 7:30-8:20pm, 105 CS building
e This week (9/19: TODAY):

 Tutorial of Assembly programming and kernel debugging

Project 1

e Design review:
» 9/26: 1:30pm — 6:30pm (Signup online), 010 Friend Center

e Project 1 due: 10/02 at 11:55pm

To do:
e Make sure you have your project partner

Today

Overview of OS functionality
Overview of OS components

Hardware of A Typical Computer

O
CPU CPU
Memory 4@@
I/O bus
ROM
< | Network

5lﬂ

A Typical Computer System

CPU

CPU

Memory
Application
Operating System
BIOS
ROM
\

os [| N
ADDS | % - Network
Data |

Typical Unix OS Structure

Euﬁ-

Application

Libraries

User level

Kernel level

Portable OS Layer

v

Typical Unix OS Structure

Euﬁ’-

00
User function calls
written by programmers and
Application ‘/Kcompiled by programmers.
Libraries
Portable OS Layer

v

EM’-

Typical Unix OS Structure
2080

K Written by elves \

* Objects pre-compiled
* Defined in headers

Application * Input to linker
* Invoked like functions

« May be “resolved” when

Libraries ,/\program is loaded /

Portable OS Layer

v

glﬂ

Application: How it's created

foo.c — gcc — foo.s — as » f00.0
bar.c —* gcc —* bars [as * bar.o Id * a.out
libc.a

gcc can compile, assemble, and link together

Compiler (part of gcc) compiles a program into assembly
Assembler compiles assembly code into relocatable object file
Linker links object files into an executable

For more information:
e Read man page of a.out, elf, Id, and nm
e Read the document of ELF

glﬂ

Application: How it's executed

On Unix, “loader” does the job

e Read an executable file

e Layout the code, data, heap and stack
e Dynamically link to shared libraries

e Prepare for the OS kernel to run the application

*.0, *.a » Id » a.out

» loader

Application

Shared
library

10

What an executable application looks like
2080

2" -1

L

¢ Four segments
e Code/Text — instructions
e Data — global variables
e Stack
e Heap

¢ Why: f
e Separate code and data?

e Have stack and heap go
towards each other? Initialized data

Heap

Code 0

11

S

In More Detall

High Address Args and env vars Command line arguments and environment variables
Stack
I
\Y%
Unused memory
A
I
Heap
Uninitialized Data Segment (bss) Initialized to zero by exec.
Initialized Data Segment Read from the program file by exec.
Low Address Text Segment Read from the program file by exec.
&

2

12

5lﬂ

Responsibilities for the segments

Stack

e Layout by ?

e Allocated/deallocated by ?

e Names are absolute/relative? Local/global?
Heap

e \Who sets the starting address?

e Allocated/deallocated by ?

e How do application programs manage it?
Global data/code

e \Who allocates?

e \Who defines names and references?

e \Who translates references?

e \Who relocates addresses?

e \Who lays them out in memory?

13

Typical Unix OS Structure

Euﬁ-

v

Application

Libraries

Portable OS Layer

“Guts” of system calls

14

5lﬂ

Must Support Multiple Applications

In multiple windows
e Browser, shell, powerpoint, word, ...

Use command line to run multiple applications
% Is —al | grep ‘Ad’

% foo &

% bar &

15

Multiple Application Processes

Euﬁ’-

s

Application

Application

Libraries

Libraries

Application

Libraries

Portable OS Layer

16

5lﬂ

OS Service Examples

Examples that are not provided at user level

e System calls: file open, close, read and write

e Control the CPU so that users won'’t cause problems
« while (1) ;

e Protection:

» Keep user programs from crashing OS
« Keep user programs from crashing each other

System calls are typically traps or exceptions
e System calls are implemented in the kernel
e Application “traps” to kernel to invoke a system call
e \When finishing the service, a system returns to the user code

17

glﬂ

Interrupts

Raised by external events

nterrupt handler is in the 0:
Kernel

e Switch to another process
e Overlap 1/0 with CPU .

. —_—

o ... I+1: <

Eventually resume the
interrupted process N:

Interrupt
handler

A way for CPU to wait for
long-latency events (like 1/O)
to happen

18

5\‘3

Typical Unix OS Structure

Application

Libraries

-

Portable OS Layer

- By

» Bootstrap
» System initialization

* Interrupt and exception

* 1/0O device driver
* Memory management
* Mode switching

* Processor management

~

/

19

Software “Onion” Layers
200

User and Kernel
boundary

Applications

Device

20

gtﬂ

Today

¢ Overview of OS functionality
¢ Overview of OS components

S

e Process management
e Memory management

e |/O device management
e File System

e Window System

e Bootstrap

21

5lﬂ

Processor Management

Goals

e Overlap between I/O and
computation

e Time sharing
e Multiple CPU allocation

Issues
e Do not waste CPU resources

e Synchronization and mutual
exclusion

e Fairness and deadlock

CPU | I/O | CPU
CPU | /O
CPU
CPU
/O
CPU

CPU

CPU

22

Memory Management

Goals

e Support for programs to be
written easily

e Allocation and management

e Transfers from and to
secondary storage

Issues

e Efficiency & convenience
e Fairness

e Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

23

glﬂ

/O Device Management

Goals

e Interactions between
devices and applications

e Ability to plug in new
devices

Issues

e Efficiency

e Fairness

e Protection and sharing

User 1 User n
Library support
Driver Driver
I/0 I/0
device device

24

5lﬂ

File System

Goals:
e Manage disk blocks
e Map between files and disk blocks

Typical file system calls
e Open a file with authentication
e Read/write data in files
e Close afile

Issues

e Reliability

e Safety

e Efficiency

e Manageability

User 1

User n

File system services

File

File

_—
\

tl_‘

 ~

P

W%

25

gtﬂ

Window Systems

¢ Goals
e Interacting with a user
e Interfaces to examine and
manage apps and the system
¢ Issues

e Inputs from keyboard, mouse,
touch screen, ...

e Display output from applications
and systems

e Where is the Window System?
* All in the kernel (Windows)
« All at user level
« Split between user and kernel (Unix)

S

-

5

0

26

5lﬂ

Bootstrap

Power up a computer
Processor reset
e Set to known state

e Jump to ROM code
(BIOS is in ROM)

Load in the boot loader from
stable storage

Jump to the boot loader

Load the rest of the operating
system

Initialize and run

Boot loader

Boot loader

OS sector 1

OS sector 2

OS sector n

27

5lﬂ

Summary

Overview of OS functionality
e Layers of abstraction

e Services to applications

e Resource management
Overview of OS components
e Processor management

e Memory management

e |/O device management

e File system

e \Window system

28

Appendix: Booting a System

29

5lﬂ

Bootstrap

Power up a computer
Processor reset
e Set to known state

e Jump to ROM code (BIOS is
in ROM)

Load in the boot loader from
stable storage

Jump to the boot loader

Load the rest of the operating
system

Initialize and run

Boot
loader

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

30

System Boot

Power on (processor waits until Power Good
Signal)

Processor jumps to a fixed address, which is the
start of the ROM BIOS program

COS318 Lec 2

31

ROM Bios Startup Program (1)

POST (Power-On Self-Test)

» Stop booting if fatal errors, and report
Look for video card and execute built-in ROM
BIOS code (normally at CO00h)
Look for other devices ROM BIOS code

Display startup screen
* BIOS information

Execute more tests

* memory
* system inventory

COS318 Lec 2

32

5lﬂ

ROM BIOS startup program (2)

Look for logical devices

e Label them

» Serial ports

« COMT1, 2, 3,4
« Parallel ports

« LPT1,2,3

e Assign each an |/O address and interrupt numbers
Detect and configure Plug-and-Play (PnP) devices
Display configuration information on screen

COS318 Lec 2 33

ROM BIOS startup program (3)

Search for a drive to BOOT from
Load code in boot sector
Execute boot loader

Boot loader loads program to be booted

* If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

Transfer control to loaded program

COS318 Lec 2

34

