"Princeton University

Computer Science 217: Introduction to Programming Systems

-
Goals of this Lecture

Process Management

Help you learn about:
» Creating new processes
» Waiting for processes to terminate
» Executing new programs
 Shell structure

Why?
» Creating new processes and executing new programs are
fundamental tasks of a Unix shell
» See Assignment 7
» A power programmer knows about Unix shells

2

-
System-Level Functions :V

-
Agenda

As noted in the Exceptions and Processes lecture...

Linux system-level functions for process management

O P

exit() Terminate the process
517 fork() Create a child process
7 wait() Wait for child process termination
1 execvp() Execute a program in current process
20 getpid() Return the process id of the current

process

>

Creating new processes
Waiting for processes to terminate
Executing new programs

Shell structure

Y

-
Why Create New Processes?

-
fork System-Level Function

Why create a new process?
« Scenario 1: Program wants to run an additional instance of itself
» E.g., web server receives request; creates additional instance of
itself to handle the request; original instance continues listening
for requests
» Scenario 2: Program wants to run a different program
» E.g., shell receives a command; creates an additional instance of
itself; additional instance overwrites itself with requested program
to handle command; original instance continues listening for
commands

How to create a new process?
« A “parent” process forks a “child” process
» (Optionally) child process overwrite itself with a new program

pid_t fork(void);
» Create a new process by duplicating the calling process
» New (child) process is an exact duplicate of the calling (parent)
process
* In the child, return 0
« In the parent, return the process id of the child

fork() is called once in parent process

fork() returns twice
» Once in parent process
* Once in child process

¢

~

Creating New Processes

9.

~

~

Simple fork Example

Parent process and child process run concurrently
* Two CPUs available =
« Parent process and child process run in parallel
» Fewer than two CPUs available =
« Parent process and child process run serially
« OS provides the illusion of parallel execution
* OS causes context switches between the two processes
» (Recall Exceptions and Processes lecture)

Reality: Each CourselLab computer has 24 CPUs

Simplifying assumption: there is only one CPU
» We' Il speak of “which process gets the CPU”

-

Simple fork Example Trace 1 (1)

9

~

-

Simple fork Example Trace 1 (2)

9

Parent prints “one”

Parent forks child

Executing concurrently

-

Simple fork Example Trace 1 (3)

9

~

-

Simple Tfork Example Trace 1 (4)

OS gives CPU to child; child prints “two”

Executing concurrently

Child exits

Executing concurrently

~
Simple fork Example Trace 1 (5)

~
Simple fork Example Trace 1 (6)

OS gives CPU to parent; parent prints “two”

OS gives CPU to parent; parent prints “two”

-~
Simple fork Example Trace 1 Output

~
Simple fork Example Trace 2 (1)

Output:

From parent
E From child
From parent

Parent prints “one”

~
Simple fork Example Trace 2 (2)

~
Simple fork Example Trace 2 (3)

Parent forks child

Executing concurrently

OS gives CPU to parent; parent prints “two”

Executing concurrently

-

Simple fork Example Trace 2 (4)

-

Simple fork Example Trace 2 (5)

Parent exits

Executing concurrently

OS gives CPU to child; child prints “two”

®)

-

Simple fork Example Trace 2 (6)

-

Simple fork Example Trace 2 Output

Child exits

)

Output:

_

From parent

From parent

From child

2)

-

Fact 1: fork and Process State

-

N
Fact 2: fork and Process Ids

9

Immediately after Fork(), parent and child have
identical but distinct process states
» Contents of registers
» Contents of memory
« File descriptor tables
* (Relevant later)
- Etc.
» See Bryant & O’Hallaron book for details

2)

Any process has a unique nonnegative integer id
» Parent process and child processes have different process ids
» No process has process id 0

2

-
Fact 3: fork and Return Values

~
fork Example

Return value of fork has meaning
* In child, fork() returns 0
* In parent, fork() returns
process id of child

-~

fork Example Trace 1 (1)

-~

fork Example Trace 1 (2)

Parent forks child

Executing concurrently

-~

fork Example Trace 1 (3)

-~

fork Example Trace 1 (4)

Assume OS gives CPU to child

Executing concurrently

Child decrements its x, and prints “child: 0”

Executing concurrently

~
fork Example Trace 1 (5)

~
fork Example Trace 1 (6)

Child exits; OS gives CPU to parent

In parent, fork() returns process id of child

Process id of child

~
fork Example Trace 1 (7)

fork Example Trace 1 (8)

=
=
[
o
—_
—
3
]
c
Q
o
(o]
c
g
o
]
Q
x
L
=)
4 2

Parent increments its x, and prints “parent: 2”

2

Parent exits

*

~
fork Example Trace 1 Output

~
fork Example Trace 2 (1)

Example trace 1 output:

»)

)

-~

fork Example Trace 2 (2)

-~

fork Example Trace 2 (3)

Parent forks child

Executing concurrently

Assume OS gives CPU to parent

Executing concurrently

-~

fork Example Trace 2 (4)

-~

fork Example Trace 2 (5)

Parent increments its x and prints “parent: 2”

Executing concurrently

Parent exits; OS gives CPU to child

Executing concurrently

-~

fork Example Trace 2 (6)

-~

fork Example Trace 2 (7)

In child, fork() returns 0

Child decrements its x and prints “child: 0”

~
fork Example Trace 2 (8)

~
fork Example Trace 2 Output g!g

Child exits Example trace 2 output:

*)
4 N)
Agenda 3!3 wait System-Level Function &!3
Problem:
. » How to control execution order?
Creating new processes
L. . Solution:
Waiting for processes to terminate « Parent should call wait()
. « (child is a “zombie” until parent does the wait(), so the parent should harvest (or
EXGCUtIng new programs reap) its children... more later)
Shell structure pid_t wait(int *status);
» Suspends execution of the calling process until one of its children
terminates
« If status is not NULL, stores status information in the int to which it
points; this integer can be inspected with macros [see man page for
details].
» On success, returns the process ID of the terminated child
* On error, returns -1 Paraphrasing man page
5) *)

-
wait Example

~
wait Example Trace 1 (1)

~

9

Parent forks child

Executing concurrently

~
wait Example Trace 1 (2)

~
wait Example Trace 1 (3)

OS gives CPU to parent

Executing concurrently

Parent calls wait()

Executing concurrently

~
wait Example Trace 1 (4)

.
9

~
wait Example Trace 1 (5)

OS gives CPU to child

Executing concurrently

Child prints “child” and exits

Executing concurrently

~
wait Example Trace 1 (6)

.
9

~
wait Example Trace 1 Output

Parent returns from call of wait(), prints “parent”, exits

J

Example trace 1 output

*J

~
wait Example Trace 2 (1)

~
wait Example Trace 2 (2)

Parent forks child OS gives CPU to child
= =
IS IS
o o
= =
2 e
8 8
£ 2
3 3
2 2
i i
o N (.)
wait Example Trace 2 (3) g!g wait Example Trace 2 (4) g!g
Child prints “child” and exits OS gives CPU to parent
>
5
=
e
8
2
3
2
i
)
o o)
wait Example Trace 2 (5) wait Example Trace 2 (6) g!g
Parent calls wai t(); returns immediately Parent prints “parent” and exits

59) 60)

4 N 7 N
wait Example Trace 2 Output 4 Aside: Orphans and Zombies o\,]
Example trace 2 output
Question:
_ * What happens if parent process does not wait for (reap/harvest)
child child process?
arent
P Answer 1:
* In shell, could cause sequencing problems
» E.g, parent process running shell writes prompt for next command
Same as trace 1 output! before current command is finished executing
Answer 2:
« In general, child process becomes zombie and/or orphan
61/ 62/
4 N 7 N
Aside: Orphans and Zombies P\ Aside: Orphans and Zombies b\, 4
Normal Terms inside boxes
Parent waits f indicate condition of
arent walts for .
Orphan onild e Child bxits child process
» A process that has no parent
Zombie
» A process that has terminated but has not been waited for (reaped) Parent waits i prent exits Progess 1 adopts child
. |Orphan Zombie | |Norma| |
Orphans and zombies never exis
. C|ugesr Un|Xtdata structures unr;e(;;;ssar”y polychlorinate Process 1 adopts child Child xits
. maintains unnecessary s biphenyls? : -
« Can become long-running processes “ o, process Zom@ Zom@
» Consume CPU time unnecessarily ontrol blocks! Process 1 detefts that child Process|1 detects that child
has exited, anq waits for child has exit¢d, and waits for child
EANNNCS
4 N 7 N

Agenda

execvp System-Level Function

Creating new processes
Waiting for processes to terminate
Executing new programs

Shell structure

“)

Problem: How to execute a new program?
» Usually, in the newly-created child process

Solution: execvp()

int execvp(const char *file, char *const argv[]);
» Replaces the current process image with a new process image
» Provides an array of pointers to null-terminated strings that
represent the argument list available to the new program
+ The first argument, by convention, should point to the filename
associated with the file being executed
» The array of pointers must be terminated by a NULL pointer

Paraphrasing man page

“)

-
execvp System-Level Function

~

9.

-
execvp Failure

Example: Execute “cat readme”

« First argument: name of program to be executed

* Must begin with program name, end with NULL

» Second argument: argv to be passed to main() of new program

)

fork()
« If successful, returns two
times
* Once in parent
* Once in child

execvp()
« If successful, returns zero times
» Calling program is overwritten with new program
« Corollary:
« If execvp() returns, then it must have failed

-
execvp Example

-
execvp Example

“)

~
execvp Example Trace (1)

~

9

~
execvp Example Trace (2)

Process creates arguments to be passed to execvp()

Process executes execvp()

)

-~

execvp Example Trace (3)

~
execvp Example Trace (4)

cat program executes in same process

")

cat program writes “This is my\nreadme file.”

*J

-

execvp Example Trace (5)

~
execvp Example Trace (6)

cat program terminates

)

Output

")

-

Agenda

-

Shell Structure

Creating new processes

Waiting for processes to terminate

Executing new programs

Shell structure

)

Parent (shell) reads &
parses the command line
- E.g., “cat readme”

Parent forks child
Parent waits

Child calls execvp to
execute command

Child exits
Parent returns from wait

Parent repeats

shell

parent chyd

cat readme

J

")

~
Simple Shell Code

-
Simple Shell Trace (1)

Parent Process

Parent reads and parses command line
Parent assigns values to somepgm and someargv

-
Simple Shell Trace (2)

~
Simple Shell Trace (3)

Parent Process Child Process

executing
concurrently

Tork() creates child process
Which process gets the CPU first? Let’ s assume the parent...

")

Child Process

Parent Process

child’ s pid

=

e
o
£
-—
3 3
o O
28
o o

In parent, pid != 0; parent waits; OS gives CPU to child

-

Simple Shell Trace (4)

~

9

-

Simple Shell Trace (5)

Parent Process

executing

0

concurrently

Child Process

Parent Process

=

e
o
£
-—
3 3
o O
28
o o

Child Process

In child, pid == 0; child calls execvp()

In child, somepgm overwrites shell program;
main() is called with someargv as argv parameter

%

s

Simple Shell Trace (6)

~

9.

-
Simple Shell Trace (7)

9.

Parent Process

executing

concurrently

Child Process

Somepgm executes in child, and eventually exits

=)

Parent Process

Parent returns from wait() and repeats

)

~
Background processes

~

9

~
Aside: system Function

~

9

Unix shell lets you run a process “in the background”
$ compute <my-input >my-output é
How it's implemented in the shell:

Don’t wait() after the fork!

But: must clean up zombie processes
waitpid(0, &status, WNOHANG)
When to do it?

Every time around the main loop, or

When parent receives the SIGCHLD signal.

(more info: “man 2 wait”)

One or the other,
don’t need both!

J

Common combination of operations
* fork() to create a new child process
= execvp() to execute new program in child process
=wait() in the parent process for the child to complete

Single call that combines all three
e int system(const char *cmd);

Example

*)

~
Aside: system Function

9

~
Aside: Tork Efficiency

~

9

Question:

* Why not use system() instead of fork()/execvp()/wait() in
Assignment 7 shell?

Shallow answer:
» Assignment requirements!

Deeper answer:

» Using system(), shell could not handle signals as specified
» See Signals reference notes

»)

Question:

= fork() duplicates an entire process (text, bss, data, rodata, stack,
heap sections)
« Isn’ t that very inefficient???!!!

Answer:
» Using virtual memory, not really!
» Upon fork(), OS creates virtual pages for child process
» Each child virtual page maps to physical page (in memory or on
disk) of parent
» OS duplicates physical pages incrementally, and only if/when
“write” occurs (“copy-on-write”)

*)

N I
Aside: exec Efficiency B Aside: fork/exec Efficiency B
Question: The bottom line...
= execvp() loads a new program from disk into memory . .
« Isn’ t that somewhat inefficient? Tork() and exeCVp(). are efﬂmgnt o
» Because they were designed with virtual memory in mind!
Answer:
» Using virtual memory, not really!
» Upon execvp(), OS changes process’ s virtual page table to point
to pages on disk containing the new program
« As page faults occur, OS swaps pages of new program into memory Commentary: A beautiful intersection
incrementally as needed of three beautiful abstractions
91) 92)
4 N 7 I
Assignment 7 Suggestion S Summary P\ 4
A shell is mostly a big loop Creating new processes
» Read char array from stdin = fork()
 Lexically analyze char array to create token array E ti
» Parse token array to create command xeculing new programs
» Execute command execvpQ
« Fork child process Waiting for processes to terminate
* Parent: ewaitQ)
» Wait for child to terminate
* Child: Shell structure
+ Exec new program » Combination of fork(), eXeCVp(), Wait()
Start with code from earlier slides and from precepts
» And edit until it becomes a Unix shell!
93) 94)

