= . .
Princeton University '
Computer Science 217: Introduction to Programming Systems a&é

~

Ve

L

Goals of this Lecture

-
Review: Multi-File Programs

~

9

Help you learn about:
 The build process for multi-file programs
« Partial builds of multi-file programs
» make, a popular tool for automating (partial) builds

intmath.h (interface)

testintmath.c (client)

Ve

Buildi ng Why? intmath.c (implementation)
» A complete build of a large multi-file program typically consumes
many hours
» To save build time, a power programmer knows how to do partial
builds
» A power programmer knows how to automate (partial) builds using
ki
make Note: intmath.h is
#included into intmath.c
and testintmath.c
), 2) See precept handouts for stylistically better version 3)
N 7 N 7 N
Review: Multi-File Programs @ Agenda @ Motivation for Make (Part 1) &

gce217 —E testintmath.e
> testingmath.i

Preprocess

gce217 —S testintmath. i Compile 4 intmath.i

gce217 —c testintmath.s gcc217 —c|intmath.s

Assemble

n
gce217 teStiatmath.o intmath.o —oteStintmath

Y

Motivation for Make
Make Fundamentals
Non-File Targets
Macros
Abbreviations

Pattern Rules

>

Building testintmath, approach 1:
« Use one gcc217 command to preprocess, compile, assemble, and
link

gcc217 testintmath.c intmath.c —o testintmath

S

4)

4)

s

Motivation for Make (Part 2) B\ 4 Partial Builds B\ 4 Partial Builds ';,;,
Building testintmath, approach 2: Approach 2 allows for partial builds + Example: Change testintmath.c
« Preprocess, compile, assemble to produce .o files + Example: Change intmath.c * Mustrebuild testintmath.o and testintmath
« Link to produce executable binary file + Mustrebuild intmath.o and testintmath * Need not rebuild intmath.o!!!
« Need not rebuild testintmath.o!!! .) I
If program contains many .c files, could save many hours of build time
Recall: -c option
tells gcc217 to omit link
g
‘ intmath.h ‘ ‘ intmath.c ‘ testintmath.c ‘ intmath.h ‘ (‘ intma@ ((testintmath.c} ‘ intmath.h ‘ ‘ intmath.c ‘
intmath.c gce2 €c217 —e”intmath.c c”intmath.c
fntmath.o i 0 —o0 testintmath gcc217 testintmath.o i .0 —0 testintmath gcc217 testiatmath.o .0 —0 testintmath
Y s >/
4 N N N
. . ’ .
Partial Builds Wouldn’t It Be Nice... P\ Agenda P\
]] s
However, changing a .h file can be more dramatic Observation
+ Example: Change intmath.h « Doing partial builds manually is tedious and error-prone o
= intmath_his #included into testintmath.c and intmath.c * Wouldn’ tit be nice if there were a tool Motivation for Make
. Char]ging intmath.h effectively changes testintmath.c How would the tool work? Make Fundamentals
and intmath.c « Input:
» Mustrebuild testintmath.o, intmath.o, and testintmath « Dependency graph (as shown previously) Non-File Targets
« Specifies file dependencies M
change « Specifies commands to build each file from its dependents acros
« Date/time stamps of files ot
‘ testintmath.c ‘ ‘ intmath._c ‘ « Algorithm: Abbreviations
gce? ec217 —o” intmath.c « If file B depends on A and date/time stamp of A is newer than Pattern Rules
= - date/time stamp of B, then rebuild B using the specified
Sommand
gcc217 testintmath.o intmg#f.o —o testintmath
That’ s make!
o)) .)

4 N 7 N 7 N
The Make Tool a!; Make Command Syntax a!; Dependency Rules g!;
Command syntax Dependency rule syntax
target: dependencies
make [-f makefile] [target] <tab>command
Who? Stuart Feldman '68 .
- makefile = target: the file you want to build
When? 1976 - Textual representation of dependency graph = dependencies: the files on which the target depends
« Contains dependency rules = command: what to execute to create the target (after a TAB
?
Where? Bell Labs « Default name is makefi le, then MakeFi le character)
Why? Automate partial builds Dependency rule semantics
target . « Build target iff it is older than any of its dependencies
* Whatmake should build)
. » Use command to do the build
« Usually: .ofile, or an executable binary file
. « Default is first one defined in makefile
(Thls is Stu Feldman recently;
in 1976 he looked younger) Work recursively; examples illustrate. ..
13/ 14/ 15/
4 N 7 N 7 N
Makefile Version 1 a!; Version 1 in Action a!; Agenda a!;
At first, to build testintmath Use the touch command to
p make issues all three gcc change the date/time stamp L
c”intnath.c commands of intmath.c Motivation for Make
Make Fundamentals
.0 —0 testintmath Non-File Targets
Makefile: Macros
Abbreviations
make does a partial build Pattern Rules
make notes that the specified
targetis up to date
The default target is testintmath,
10) the target of the first dependency rule ") 18)

e

Non-File Targets

L

e

Makefile Version 2

ot

-
Version 2 in Action

9

Adding useful shortcuts for the programmer
= make all: create the final executable binary file
= make clean: delete all .o files, executable binary file

= make clobber: delete all Emacs backup files, all .o files, executable binary

file

Commands in the example
< rm —f: remove files without querying the user

- Files endingin ‘~" and starting/endingin ‘# are Emacs backup files

make observes that “clean” target
doesn’ t exist; attempts to build it
by issuing “rm” command

Same idea here, but

“clobber” depends upon “clean’

“all” depends upon
“testintmath”

“all” is the default target‘

1)) 2
4 N N N
Agenda a!g Macros a!,g Makefile Version 3 a!g

make has a macro facility
R « Performs textual substitution
Motivation for Make « Similar to C preprocessor’s #define
Make Fundamentals Macro definition syntax
Non-File Targets macroname = macrodefinition
= make replaces $(macroname) with macrodefinition in remainder of
Macros Makefile
Abbreviations Example: Make it easy to change build commands
CC = gcc217
Pattern Rules
Example: Make it easy to change build flags
CFLAGS = -D NDEBUG -0
22) 23') 24)

4 N N)
Version 3 in Action a!g Agenda a!g Abbreviations a!g
Abbreviations
. L * Target file: $@
Same as Version 2 Motivation for Make - Firstitem in the dependency list: $<
Make Fundamentals Example
Non-File Targets
Abbreviations
Pattern Rules 1
25) 26) 27)
4 N N)
Makefile Version 4 a!,g Version 4 in Action a!,g Agenda a!g

=)

Same as Version 2

»)

Motivation for Make
Make Fundamentals
Non-File Targets
Macros
Abbreviations

Pattern Rules

®)

4 N 7 N 7 N
Pattern Rules a!g Pattern Rules Bonus a!s Makefile Version 5 a!s
Pattern rule Bonus with pattern rules
» Wildcard version of dependency rule Firstdependency is assumed
» Example:
« Translation: To build a .o file from a .c file of the same name, use
the command $(CC) $(CFLAGS) -c $< 1
» With pattern rule, dependency rules become simpler:
Can omit build command Can omit first dependency
31) 32) 33)
4 N 7 N 7 N
Version 5 in Action a!s Makefile Guidelines a!g Makefile Guidelines a!g
Same as Version 2
a.o: a.c a.h c.h d.h X: a.o b.o
gcc2l7 —c a.c gcc217 a.o b.o —o x
In a proper Makefile, each object file:
» Depends upon its .c file . . X
. %oes nori depend upon any other .¢ file In a proper Makefile, each executable binary file:
+ Does not depend upon any .o file « Depends upon the .o files that comprise it
» Depends upon any .h file that its .c file #includes directly or * Does not depend upon any .cfiles
) indirectly) » Does not depend upon any .h files)

4 N N N
Making Makefiles b\ 1 Makefile Gotchas a!ig Make Resources a!;;
In this course Beware:
 Create Makefiles manually cp ina: A Mod A h (Ki Section 15.4
» Each command (i.e., second line of each dependency rule) must rogramming: odern Approach (King) Section :
begin with a tab character, not spaces GNU make
Beyond this course)) « http://www.gnu.org/software/make/manual/make.html
» Can use tools to generate Makefiles * Usethe rm —f command with caution
« See mkmf, others
37) 38) 39)
4 N
Summary b 4]

Motivation for Make
« Automation of partial builds

Make fundamentals (Makefile version 1)
» Dependency rules, targets, dependencies, commands

Non-file targets (Makefile version 2)
Macros (Makefile version 3)
Abbreviations (Makefile version 4)

Pattern rules (Makefile version 5)

“)

