
1

Testing

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 6

Princeton University
Computer Science 217: Introduction to Programming Systems

2

For Your Amusement

“On two occasions I have been asked [by members of Parliament!],

‘Pray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out?’ I am not able rightly to apprehend the

kind of confusion of ideas that could provoke such a question.”
‒ Charles Babbage

“Program testing can be quite effective for showing the presence

of bugs, but is hopelessly inadequate for showing their absence.”
‒ Edsger Dijkstra

“Beware of bugs in the above code; I have only proved it correct,

not tried it.”
‒ Donald Knuth

“Programming in the Large” Steps

Design & Implement
• Program & programming style

• Common data structures and algorithms

• Modularity

• Building techniques & tools

Debug
• Debugging techniques & tools

Test
• Testing techniques <-- We are here

Maintain
• Performance improvement techniques & tools

3

Goals of this Lecture

Help you learn about:
• Internal testing

• External testing

• General testing strategies

Why?
• It’s hard to know if a (large) program works properly

• A power programmer spends at least as much time composing

test code as he/she spends composing the code itself

• A power programmer knows how to spend that time wisely

4

5

Program Verification

Ideally: Automatically prove that a program is

correct (or demonstrate why it’s not)

General

Program

Checkerprogram.c

Right or Wrong
Specification

?
That’s

impossible

Alan M. Turing *38

6

Program Verification

Actual: Check a user-provided proof that a program

satisfies its specification

General

Proof

Checkerprogram.c

Right or Wrong
Specification

?

Proof

That’s more

like it!

7

Program Verification

If you want to learn more about this,

take COS 326 Functional Programming

and then perhaps COS 510 or COS 516

General

Proof

Checkerprogram.c

Right or Wrong
Specification

Proof

8

Program Testing

Pragmatically: Convince yourself that a specific

program probably works

Specific

Testing

Strategyprogram.c

Possibly Right
(no bugs found)

or

Certainly Wrong
(bugs found)

Specification

Agenda

External testing
• Designing data to test your program

Internal testing
• Designing your program to test itself

General testing strategies

9

10

Statement Testing

(1) Statement testing

• “Testing to satisfy the criterion that each statement in a program be

executed at least once during program testing.”

From the Glossary of Computerized System and Software Development Terminology

11

Statement Testing Example

Example pseudocode:

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Statement testing:

Should make sure both if

statements and all 4 nested

statements are executed

How many passes

through code are

required?

12

Path Testing

(2) Path testing

• “Testing to satisfy coverage criteria that each logical path through

the program be tested. Often paths through the program are

grouped into a finite set of classes. One path from each class is then

tested.”

From the Glossary of Computerized System and Software Development Terminology

13

Path Testing Example

Example pseudocode:

• Simple programs ⇒ maybe reasonable

• Complex program ⇒ combinatorial explosion!!!

• Path test code fragments

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Path testing:

Should make sure all logical

paths are executed

How many passes

through code are

required?

14

Boundary Testing

(3) Boundary testing (alias corner case testing)

• “A testing technique using input values at, just below, and just

above, the defined limits of an input domain; and with input values

causing outputs to be at, just below, and just above, the defined

limits of an output domain.”

From the Glossary of Computerized System and Software Development Terminology

15

Boundary Testing Example

Specification:
• Print the n elements of array a to stdout, in reverse order

Attempt:

void printBackwards(int a[], unsigned int n)

{

unsigned int i;

for (i = n; i >= 0; i--)

printf("%d\n", a[i]);

}

Does it work?

16

Stress Testing

(4) Stress testing

• “Testing conducted to evaluate a system or component at or beyond

the limits of its specified requirements”

From the Glossary of Computerized System and Software Development Terminology

17

Stress Testing

Should stress the program with respect to:
• Quantity of data

• Large data sets

• Variety of data

• Textual data sets containing non-ASCII chars

• Binary data sets

• Randomly generated data sets

Should use computer to generate input sets
• Avoids human biases

18

Stress Testing Example 1

Specification:
• Print number of characters in stdin

Attempt:

#include <stdio.h>

int main(void)

{ char charCount = 0;

while (getchar() != EOF)

charCount++;

printf("%d\n", charCount);

return 0;

}

Does it work?

19

Stress Testing Example 2

Specification:
• Read a line from stdin

• Store as string (without '\n') in array of length ARRAY_LENGTH

Attempt:

int i;

char s[ARRAY_LENGTH];

for (i = 0; i < ARRAY_LENGTH-1; i++)

{ s[i] = getchar();

if ((s[i] == EOF) || (s[i] == '\n')) break;

}

s[i] = '\0';

Does it work?

20

External Testing Summary

External testing: Designing data to test your program

External testing taxonomy

(1) Statement testing

(2) Path testing

(3) Boundary testing

(4) Stress testing

Agenda

External testing
• Designing data to test your program

Internal testing
• Designing your program to test itself

General testing strategies

21

22

Aside: The assert Macro

assert(int expr)

• If expr evaluates to TRUE (non-zero):

• Do nothing

• If expr evaluates to FALSE (zero):

• Print message to stderr “assert at line x failed”

• Exit the process

Useful for internal testing

23

Aside: The assert Macro

Disabling asserts
• To disable asserts, define NDEBUG…

• In code:

• Or when building:

/*------------------------------------*/

/* myprogram.c */

/*------------------------------------*/

#include <assert.h>

#define NDEBUG

…

/* Asserts are disabled here. */

…

$ gcc217 –D NDEBUG myprogram.c –o myprogram

24

Validating Parameters

(1) Validate parameters
• At leading edge of each function, make sure values of parameters

are valid

int f(int i, double d)

{

assert(i has a reasonable value);

assert(d has a reasonable value);

…

}

25

Validating Parameters

• Example

/* Return the greatest common

divisor of positive integers

i and j. */

int gcd(int i, int j)

{

assert(i > 0);

assert(j > 0);

…

}

26

Checking Invariants

(2) Check invariants
• At leading edge of function, check aspects of data structures that

should not vary; maybe at trailing edge too

int isValid(MyType object)

{ …

/* Code to check invariants goes here.

Return 1 (TRUE) if object passes

all tests, and 0 (FALSE) otherwise. */

…

}

void myFunction(MyType object)

{ assert(isValid(object));

…

/* Code to manipulate object goes here. */

…

assert(isValid(object));

}

27

Checking Invariants

• Example

• “Balanced binary search tree insertion” function

• At leading edge:

• Are nodes sorted?

• Is tree balanced?

• At trailing edge:

• Are nodes still sorted?

• Is tree still balanced?

28

Checking Return Values

(3) Check function return values
• Check values returned by called functions

someRetValue = f(someArgs);

if (someRetValue == badValue)

/* Handle the error */

…

f(someArgs);

… Bad code (sometimes)

Good code

if (f(someArgs) == badValue)

/* Handle the error */

…

Good code

29

Checking Return Values

• Example:

• scanf() returns number of values read

• Caller should check return value

int i, j;

…

if (scanf("%d%d", &i, &j) != 2)

/* Handle the error */

int i, j;

…

scanf("%d%d", &i, &j);
Bad code

Good code

30

Checking Return Values

• Example:

• printf() returns number of chars (not values) written

• Can fail if writing to file and disk quota is exceeded

• Caller should check return value???

int i = 1000;

…

if (printf("%d", i) != 4)

/* Handle the error */

int i = 1000;

…

printf("%d", i);
Is this too

much?

Bad code???

Good code???

31

Checking array subscripts

Out-of-bounds array subscript is the cause of vast numbers

of security vulnerabilities in C programs!

#include <stdio.h>

#include <assert.h>

#define N 1000

#define M 1000000

int a[N];

int main(void) {

int i,j, sum=0;

for (j=0; j<M; j++)

for (i=0; i<N; i++) {

assert (0 <= i && i < N);

sum += a[i];

}

printf ("%d\n", sum);

}

32

Checking array subscripts

Doesn’t that slow it down?

How much slower is this

program with the assertion?

$ gcc –O2 test.c; time a.out

0.385 seconds (± .02 sec)

$ gcc –O2 –D NDEBUG test.c;

time a.out

0.385 seconds (± .02 sec)

Why?

#include <stdio.h>

#include <assert.h>

#define N 1000

#define M 1000000

int a[N];

int main(void) {

int i,j, sum=0;

for (j=0; j<M; j++)

for (i=0; i<N; i++) {

assert (0 <= i && i < N);

sum += a[i];

}

printf ("%d\n", sum);

}

fgets(3) - Linux man page

Name
fgetc, fgets, getc, getchar, gets - input of characters and strings

Synopsis
#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int getc(FILE *stream);

int getchar(void);

char *gets(char *s);

Description

fgetc() reads the next character from stream and returns it as an unsigned char cast to an int, or EOF on end of file or

error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluates stream more than once.

getchar() is equivalent to getc(stdin).

gets() reads a line from stdin into the buffer pointed to by s until either a terminating newline or EOF, which it replaces with

a null byte (‘\0’). No check for buffer overrun is performed (see BUGS below).

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to by s. Reading

stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A terminating null byte (‘\0’) is stored after

the last character in the buffer.

FILE *stdin;

char *fgets(char *s, int size, FILE *stream);

char *gets(char *s);

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to by s. Reading

stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A terminating null byte (‘ \0’) is stored after

the last character in the buffer.

gets() and fgets() return s on success, and NULL on error or when end of file occurs while no characters have been read.

void interact(void) {

char name[N], *result;

assert ();

result=fgets(name, K, stdin);

printf (“Hello, %s", name);

}

Example use of fgets()

K <= N && stdin

Not perfect (doesn’t assure

stdin really points to an

initialized FILE struct) but

it’s the best we can do in C.

void interact(void) {

char name[N], *result;

assert ();

result=fgets(name, K N, stdin);

printf (“Hello, %s", name);

}

Example use of fgets()

Of course, in real life you’d use N in place of K,

N <= N && stdin

FILE *stdin;

char *fgets(char *s, int size, FILE *stream);

char *gets(char *s);

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to by s. Reading

stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A terminating null byte (‘ \0’) is stored after

the last character in the buffer.

gets() and fgets() return s on success, and NULL on error or when end of file occurs while no characters have been read.

void interact(void) {

char name[N], *result;

assert ();

result=gets(name);

printf (“Hello, %s", name);

}

Example use of gets()

0

FILE *stdin;

char *fgets(char *s, int size, FILE *stream);

char *gets(char *s);

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to by s. Reading

stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A terminating null byte (‘ \0’) is stored after

the last character in the buffer.

gets() and fgets() return s on success, and NULL on error or when end of file occurs while no characters have been read.

void interact(void) {

char name[N], *result;

result=gets(name);

printf (“Hello, %s", name);
}

No safe use of gets()

What are the possible observed behaviors of this function?

Crash immediately? Continue executing without problems?

Crash later? Whistle “Dixie”? Steal your money?

[For each behavior, raise your hand if you think it’s possible]

int j;

char name[8], *result;

FILE *f = fopen(“output”, “w”);

result=gets(name);

printf (“Hello, %s", name);

Layout of variables in memory

A n d r e w ⎵ W . ⎵ A p p e l \n

namej result f

What happens when we

interpret this as a pointer value?

Wait a few weeks and I’ll come

back to this topic!

39

Changing Code Temporarily

(4) Change code temporarily
• Temporarily change code to generate artificial boundary or stress

tests

• Example: Array-based sorting program

• Temporarily make array very small

• Does the program handle overflow?

40

Leaving Testing Code Intact

(5) Leave testing code intact

• Do not remove testing code when program is finished

• In the “real world” no program ever is “finished”!!!

• If testing code is inefficient:

• Embed in calls of assert(), or

• Use #ifdef…#endif preprocessor directives

• See Appendix

41

Internal Testing Summary

Internal testing: Designing your program to test itself

Internal testing techniques
(1) Validating parameters

(2) Checking invariants

(3) Checking function return values

(4) Changing code temporarily

(5) Leaving testing code intact

Beware of conflict between

internal testing and code clarity

Agenda

External testing
• Designing data to test your program

Internal testing
• Designing your program to test itself

General testing strategies

42

43

Automation

(1) Automate the tests
• Create scripts to test your programs

• Create software clients to test your modules

• Compare implementations (when possible)

• Make sure independent implementations behave the same

• Know what output to expect (when possible)

• Generate output that is easy to recognize as right or wrong

Automated testing can provide:
• Much better coverage than manual testing

• Bonus: Examples of typical use of your code

44

Testing Incrementally

(2) Test incrementally
• Test as you compose code

• Add test cases as you compose new code

• Do regression testing

• After a bug fix, make sure program has not “regressed”

• That is, make sure previously working code is not broken

• Rerun all test cases

• Note the value of automation!!!

• Create scaffolds and stubs as appropriate…

45

Testing Incrementally

Function 2

Function 3 Function 4

Function 1

Scaffold: Temporary

code that calls code

that you care about

Stub: Temporary

code that is called

by code that you

care about

Code that

you care about

46

Bug-Driven Testing

(3) Let debugging drive testing

• Reactive mode…

• Find a bug ⇒ create a test case that catches it

• Proactive mode…

• Do fault injection

• Intentionally (temporarily!) inject a bug

• Make sure testing mechanism catches it

• Test the testing!!!

47

General Strategies Summary

General testing strategies
(1) Automation

(2) Testing incrementally

(3) Bug-driven testing

48

Who Does the Testing?

Programmers
• White-box testing

• Pro: Know the code ⇒ can test all statements/paths/boundaries

• Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
• Black-box testing

• Pro: Do not know the code ⇒ unbiased by code design

• Con: Do not know the code ⇒ unlikely to test all

statements/paths/boundaries

Customers
• Field testing

• Pros: Use code in unexpected ways; “debug” specs

• Cons: Often don’t like “participating”; difficult to generate enough
cases

49

Summary

External testing taxonomy
• Statement testing

• Path testing

• Boundary testing

• Stress testing

Internal testing techniques
• Validating parameters

• Checking invariants

• Checking function return values

• Changing code temporarily

• Leaving testing code intact

Summary (cont.)

General testing strategies
• Automation

• Comparing implementations

• Knowing what output to expect

• Testing incrementally

• Regression testing

• Scaffolds and stubs

• Bug-driven testing

• Fault injection

Test the code – and the tests!

50

51

Appendix: #ifdef

Using #ifdef…#endif

• To enable testing code:

• To disable testing code:

…

#ifdef TEST_FEATURE_X

/* Code to test feature

X goes here. */

#endif

…

$ gcc217 –D TEST_FEATURE_X myprog.c –o myprog

myprog.c

$ gcc217 myprog.c –o myprog

