NUMBER SYSTEMS

1.	Convert the binary number 101 ₂ to decimal:	
2.	Convert the binary number 1010 ₂ to decimal:	
3.	How are the two questions above related?	
4.	Convert the binary number 10101 ₂ to decimal:	
5.	How are questions 2 and 4 related?	
6.	Convert the binary number 101011 ₂ to decimal:	
7.	Describe a program that calculates the decimal equivalent of any binary number:	
8.	Convert the decimal number 11 ₁₀ to binary:	
9.	Convert the decimal number 116 $_{10}$ to binary:	
	HEXADECIMAL	
10.	. Convert the hexadecimal numbers $ {f C}_{16}, {f D}_{16},$ and $ {f E}_{16}$ to binary:	
11.	Express the hexadecimal number CODE₁₆ as a sum of 4 terms in decimal: (i.e · 16 ³ +	· 16² +
12.	Convert the hexadecimal number CODE₁₆ to binary:	
13.	. Convert the binary number: $\mathbf{100100110_2}$ to hexadecimal:	

BITWISE OPERATORS 14. What is the value of **1010**₂ | **110**₂? **15.** What is the value of **1010**₂ & **110**₂? **16.** What is the value of **1010**₂ **^ 110**₂? **17.** What is the value of **1010**₂ << **10**₂? **18.** What is the value of **1010**₂ >> **10**₂? **19.** What is the value of **C05126₁₆** ^ **CBE245₁₆** ^ **C05126₁₆**? TWO'S COMPLEMENT **20.** What is the complement of **0101 0000 1100 1111**₂? **21.** What is the 16-bit two's complement binary representation of the decimal number 116_{10} ? **22.** What is the 16-bit two's complement binary representation of the decimal number -116_{10} ? **23.** What is the 16-bit two's complement hexadecimal representation of the decimal number -116_{10} ? **24.** What is the decimal representation of the 16-bit two's complement hexadecimal number **FFFE**₁₆?

CHALLENGE

25. Convert the binary numbers **0.1**₂ and **0.01**₂ to decimal: