NUMBER SYSTEMS

BINARY

- **1.** Convert the binary number 101_2 to decimal: 4 + 1 = 5
- 2. Convert the binary number 1010_2 to decimal: 8 + 2 = 10
- **3.** How are the two questions above related?

1010 is twice as much of 101

- **4.** Convert the binary number **10101**₂ to decimal: **21**
- 5. How are questions 2 and 4 related?

Twice as much plus one

- 6. Convert the binary number **101011**₂ to decimal: **43**
- 7. Describe a program that calculates the decimal equivalent of any binary number:

(1) Division method

(2) Subtraction method

- **8.** Convert the decimal number **11**₁₀ to binary: **1011**
- 9. Convert the decimal number 116₁₀ to binary: 1110100

HEXADECIMAL

10. Convert the hexadecimal numbers $C_{16'}$, $D_{16'}$, and E_{16} to binary:

These are twelve, thirteen, fourteen, which are 1100, 1101, 1110

11. Express the hexadecimal number **CODE**₁₆ as a sum of 4 terms in decimal: (i.e. $(16^3 + (16^3$

Note that $16 = 2^4$, $16^3 = 2^{12}$ and X2 shifts us left by one position.

CODE is 12 X 16³ + 0 X 16² + 13 X 16¹ + 14 X 16⁰

12. Convert the hexadecimal number **CODE**₁₆ to binary:

1100 0000 1101 1110

13. Convert the binary number: **100100110**₂ to hexadecimal:

126

NUMBER SYSTEMS

BITWISE OPERATORS

- **14.** What is the value of **1010**₂ | **110**₂? **1110**
- **15.** What is the value of **1010**₂ **& 110**₂? **10**
- **16.** What is the value of **1010**₂ ^ **110**₂? **1100**
- **17.** What is the value of **1010**₂ << **10**₂? **101000**
- **18.** What is the value of **1010**₂ >> **10**₂? **10**

19. What is the value of **C05126₁₆** ^ **CBE245₁₆** ^ **C05126₁₆**?

CBE245 - Since the order of inputs to xor doesn't matter, this equals $C05126_{16}^{A} C05126_{16}^{A} CBE245_{16}^{A}$ CBE245₁₆ = CBE245₁₆ = CBE245₁₆

TWO'S COMPLEMENT

20. What is the complement of **0101 0000 1100 1111**₂?

1010 1111 0011 0000

21. What is the 16-bit two's complement binary representation of the decimal number **116**₁₀?

0000 0000 0111 0100

22. What is the 16-bit two's complement binary representation of the decimal number **-116**₁₀?

First complement the bits of +116, then add one, giving 1111 1111 1000 1100

23. What is the 16-bit two's complement hexadecimal representation of the decimal number **-116**₁₀?

F F 8 C

24. What is the decimal representation of the 16-bit two's complement hexadecimal number FFFE₁₆?

 1111 1111 1110:
 - note left most bit is a 1, so this is a negative number

 0000 0000 0000 0001 +
 - complement

 1
 - add 1

 0000 0000 0000 0010
 - equals 2

So the original decimal number must -2

CHALLENGE

25. Convert the binary numbers **0.1**₂ and **0.01**₂ to decimal:

In decimal these are 10^{-1} and 10^{-2} . In binary these are likewise $2^{-1} = 1/2$ and $2^{-2} = 1/4$