Q1: Give the value and type of each of the following Java expressions. If an expression will not compile or will cause an exception at runtime, put an **X** under value and type. If the value is a string, enclose it in double quotes.

Expression	Value	Туре
1 / 0		
"800" * 1		
"1" + " - " + "1"		
3.14159 + (int) Math.PI		
1-1-1		
3 / 2.0 + 2 * 5		
(8 <= 2) (2e8 <= 8e2)		
Double.parseDouble("8.5*2")		

Q2: Consider the following code:

```
public class MethodTester {
   private static void methodB(int[] c, int d) {
      c[0]++;
      d += 42;
   }
   private static int methodA(int[] a, int b) {
      methodB(a, b);
      a[0]++;
      return b/2;
   }
   public static void main(String[] args) {
      int[] arr = {8, 9, 10};
      int x = 1;
      x = methodA(arr, x);
      System.out.println(arr[0] + " " + x);
   }
}
```

Which one of the following is the output of this program?

```
"8 3"
"8 10"
"8 21"
"9 1"
"9 3"
"9 21"
"10 0"
"10 1"
"10 21"
```

Q3: Consider the following code:

```
public class Series {
  public static int func(int j) {
  if (j==1) return 1;
    return 2 * func(j - 1) + 5 * func(j - 2);
  }

public static void main(String[] args) {
  int N = Integer.parseInt(args[0]); // assume N >= 0

  System.out.println(func(N));
  }
}
```

a. Draw the recursion tree for func(3). You only need to draw the tree up to 3 levels.

b. What is the problem with this recursive program, based on the tree you drew above?

Q4: Fill in the blanks in the following table.

hex	decimal	16-bit two's complement	TOY instruction pseudo-code
FFFE	-2	1111111111111110	R[F] = PC; PC = FE
1234	4,660		R[2] = R[3] + R[4]
1101	4,353	0001000100000001	
77FF	30,719	0111011111111111	R[7] = 00FF
FFØ1			
7A00		0111101000000000	

Hint: $7 \cdot 16^3 = 28,672$.

Q5: Consider the following TOY program:

20: 81FF
$$R[1] = stdin$$

21: **SEE BELOW**

22: 1211 R[2] = R[1] + R[1]

23: 0000 halt

What is the value of R[1] after executing the code above, where M[21] is replaced by one of the following instructions. Note, the PC starts on line 20 and 1111 is on standard input.

Your answers must be four hex digits.

M[21] set to

Value of R[1] after halt

21: 1111
$$R[1] = R[1] + R[1]$$

21: 0000 halt

21: 1211
$$R[2] = R[1] + R[1]$$

$$21: C023 PC = 23$$

$$21: 8121 R[1] = M[21]$$

$$21: 9122 M[22] = R[1]$$