COS 126

General Computer Science

Spring 2011

Programming Exam 1

This test has 1 question. You have 50 minutes. The exam is open book, open note, and open web. You may use code from your programming assignments or the Introduction to Programming in Java booksite. No communication with any non-staff members is permitted. Submit your solution via Dropbox. Write out and sign the Honor Code pledge before turning in the test.

"I pledge my honor that I have not violated the Honor Code during this examination."

Name:

NetID:

Total

P01	TTh 1:30	Keith
P01A	TTh 1:30	Doug
P01B	TTh 1:30	Victor
P01C	TTh 1:30	Richard
P01D	TTh 1:30	Gordon
P01E	TTh 1:30	Arman
P02	TTh 2:30	Doug
P03	TTh 3:30	Gordon
P03A	TTh 3:30	Keith
P04	TTh 7:30	Nick
P05	WF 10	Dmitry
P06	WF 1:30	Victor
P06A	WF 1:30	Chris
P06B	WF 1:30	Donna
P07	WF 12:30	Donna

Signature

Do not remove this exam from the room.

Problem. Write a program that apportions H U.S. House of Representatives seats to N states using the *Huntington-Hill method*:

- First, assign one seat to each state.
- Assign the remaining H N seats, one at a time, by priority:
 - The *priority* of a state whose population is p and currently has n seats assigned is

$$\frac{p}{\sqrt{n(n+1)}}$$

- Assign the next seat to the state with the highest priority (breaking any ties arbitrarily).

Example. Here is how we apportion H = 12 seats among the N = 4 states A (380), B (120), C (310), and D (190), with the populations given in parentheses. First, we assign one seat to each state. We assign the next seat to A because it has the the highest priority ($380/\sqrt{2} = 268.70$). We assign the next seat to C because its priority ($310/\sqrt{2} = 219.20$) is higher than that of B and D, as well as the new priority of A ($380/\sqrt{6} = 155.13$).

	se	ats			priorities					
A	B	C	D	A	B	C	D	seat		
0	0	0	0	—	_	_	_	_		
1	1	1	1	268.70	84.85	219.20	134.35	A		
2	1	1	1	155.13	84.85	219.20	134.35	C		
2	1	2	1	155.13	84.85	126.56	134.35	A		
3	1	2	1	109.70	84.85	126.56	134.35	D		
3	1	2	2	109.70	84.85	126.56	77.57	C		
3	1	3	2	109.70	84.85	89.49	77.57	A		
4	1	3	2	84.97	84.85	89.49	77.57	C		
4	1	4	2	84.97	84.85	69.32	77.57	A		
5	1	4	2							

Thus, A receives 5 seats, B receives 1 seat, C receives 4 seats, and D receives 2 seats.

API specification. Your program HuntingtonHill.java must be organized as a library of static methods with the following API:

public	class	HuntingtonHill
pubric	CTUDD	inditioning committee

double	priority(int p, int n)	priority of a state with population p and n seats already assigned
int	<pre>next(int[] populations, int[] seats)</pre>	index of next state to be assigned a seat given populations and current apportion- ment
void	<pre>main(String[] args)</pre>	read number of seats H as a command- line argument; read N and state names and populations from stdin; write appor- tionments to stdout

Input and output specifications. You must read input and write output as directed below:

- Command-line argument. The number of seats H to apportion.
- Standard input. An integer N followed by N string-integer pairs, where each pair is the name of a state and its population.
- Standard output. The integer N followed by N string-integer-integer triples, where each triple is the name of a state, its population, and its apportionment. (You need not duplicate our exact spacing.)

Assume that $H \ge N \ge 1$ and that the populations are positive integers. Here is a sample execution.

%	more	tiny.txt	%	java	HuntingtonHi	.11	12	<	tiny.txt
4			4						
A	380		А	380	5				
В	120		В	120	1				
С	310		C	310	4				
D	190		D	190	2				

For convenience, the following real-world input files are available:

http://introcs.cs.princeton.edu/data/1790.txt http://introcs.cs.princeton.edu/data/2000.txt http://introcs.cs.princeton.edu/data/2010.txt

% more 2010.txt		% java Huntingto	nHill 435	< 2010.txt
50		50		
Alabama	4802982	Alabama	4802982	7
Alaska	721523	Alaska	721523	1
Arizona	6412700	Arizona	6412700	9
Arkansas	2926229	Arkansas	2926229	4
California	37341989	California	37341989	53
Colorado	5044930	Colorado	5044930	7
Connecticut	3581628	Connecticut	3581628	5
Delaware	900877	Delaware	900877	1
Florida	18900773	Florida	18900773	27
Georgia	9727566	Georgia	9727566	14
Hawaii	1366862	Hawaii	1366862	2
Idaho	1573499	Idaho	1573499	2
Illinois	12864380	Illinois	12864380	18
Indiana	6501582	Indiana	6501582	9
Iowa	3053787	Iowa	3053787	4
Kansas	2863813	Kansas	2863813	4
New_Jersey	8807501	New_Jersey	8807501	12
Wyoming	568300	Wyoming	568300	1

Submission. Submit the single file HuntingtonHill.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_S2011/Exam1

Be sure to click the *Check All Submitted Files* button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments). You will receive partial credit for correctly implementing the following components:

- The priority() function.
- The next() function.
- Reading the input data, storing it in two parallel arrays, and printing it back out.

You will receive a substantial penalty if your program does not compile or if you do not follow the prescribed API or input/output specifications.