
Chapter 7

Provable Approximation via Linear
Programming

One of the running themes in this course is the notion of approximate solutions. Of course,
this notion is tossed around a lot in applied work: whenever the exact solution seems hard to
achieve, you do your best and call the resulting solution an approximation. In theoretical
work, approximation has a more precise meaning whereby you prove that the computed
solution is close to the exact or optimum solution in some precise metric.

We saw some earlier examples of approximation in sampling-based algorithms; for in-
stance our hashing-based estimator for set size. It produces an answer that is whp within
(1 + ✏) of the true answer. Today’s examples involve NP-hard problems.

For example, recall the weighted vertex cover problem, which is NP-hard. We are given
a graph G = (V, E) and a weight for each node; the nonnegative weight of node i is wi. The
goal is to find a vertex cover, which is a subset S of vertices such that every edge contains at
least one vertex of S. Furthermore, we wish to find such a subset of minimum total weight.
Let V C

min

be this minimum weight. An algorithm is said to have approximation ratio ↵
(where ↵ � 1) if it produces a vertex cover of size at most ↵ · V C

min

. At first sight this
seems impossible: we cannot compute V C

min

in polynomial time, so how can we compute a
solution of cost at most ↵ · V C

min

? The reason this can be done is that in polynomial time
we can compute a number V Cf that is less than V C

min

, and then show that our solution
weighs at most ↵V Cf . Computing this quantity V Cf will rely upon linear programming
(LP).

Most NP-hard optimization problems involve finding 0/1 solutions. Using LP one can
find fractional solutions, where the relevant variables are constrained to take real values in
[0, 1], and that is the idea in computing V Cf .

This may remind you of the assignment problem from last time, which is also a 0/1
problem —a job is either assigned to a particular factory or it is not— but the LP relaxation
magically produces a 0/1 solution (although we didn’t prove this in class). Whenever the
LP produces a solution in which all variables are 0/1, then this must be the optimum 0/1
solution as well since it is the best fractional solution, and the class of fractional solutions
contains every 0/1 solution. Thus the assignment problem is solvable in polynomial time.

Needless to say, we don’t expect this magic to repeat for NP-hard problems. So the

36



37

LP relaxation yields a fractional solution in general. Then we give a way to round the
fractional solutions to 0/1 solutions. This is accompanied by a mathematical proof that the
new solution is provably approximate.

7.1 Deterministic Rounding (Weighted Vertex Cover)

First we give an example of the most trivial rounding of fractional solutions to 0/1 solutions:
round variables < 1/2 to 0 and � 1/2 to 1. Surprisingly, this is good enough in some settings.

The following is the LP relaxation:
min

P

i wixi

0  xi  1 8i
xi + xj � 1 8 {i, j} 2 E.

Let V Cf be the optimum value of this LP. It is no more than V C
min

since every 0/1
solution (including in particular the 0/1 solution of minimum cost) is also an acceptable
fractional solution.

Applying deterministic rounding, we can produce a new set S: every node i with xi �
1/2 is placed in S and every other i is left out of S.
Claim 1: S is a vertex cover.
Reason: For every edge {i, j} we know xi + xj � 1, and thus at least one of the xi’s is at
least 1/2. Hence at least one of i, j must be in S.
Claim 2: The weight of S is at most 2OPTf .
Reason: OPTf =

P

i wixi, and we are only picking those i’s for which xi � 1/2. 2.
Thus we have constructed a vertex cover whose cost is within a factor 2 of the optimum

cost even though we don’t know the optimum cost per se.

Exercise: Show that for the complete graph the above method indeed computes a set of
size no better than 2 times OPTf .

Remark: This 2-approximation was discovered a long time ago, and despite myriad attempts
we still don’t know if it can be improved. Using the so-called PCP Theorems Dinur and
Safra showed (improving a long line of work) that 1.36-approximation is NP-hard. Khot
and Regev showed that computing a (2 � ✏)-approximation is UG-hard, which is a new
form of hardness popularized in recent years. The bibliography mentions a popular article
on UG-hardness. You can learn more about such results in the spring class, COS 522
(Computational Complexity Theory).

7.2 Simple randomized rounding: MAX-2SAT

Simple randomized rounding is as follows: if a variable xi is a fraction then toss a coin which
comes up heads with probability xi. (In Homework 1 you figured out how to do this given a
binary representation of xi.) If the coin comes up heads, make the variable 1 and otherwise
let it be 0. The expectation of this new variable is exactly xi. Furthermore, linearity of
expectations implies that if the fractional solution satisfied some linear constraint cTx = d
then the new variable vector satisfies the same constraint in the expectation. But in the
analysis that follows we will in fact do something more.



38

A 2CNF formula consists of n boolean variables x
1

, x
2

, . . . , xn and clauses of the type
y _ z where each of y, z is a literal, i.e., either a variable or its negation. The goal in
MAX2SAT is to find an assignment that maximises the number of satisfied clauses. (Aside:
If we wish to satisfy all the clauses, then in polynomial time we can check if such an
assignment exists. Surprisingly, the maximization version is NP-hard.) The following is
the LP relaxation where J is the set of clauses and yj1, yj2 are the two literals in clause j.
We have a variable zj for each clause j, where the intended meaning is that it is 1 if the
assignment decides to satisfy that clause and 0 otherwise. (Of course the LP can choose to
give zj a fractional value.)

min
P

j2J zj
1 � xi � 0 8i

1 � zj � 0 8j
yj1 + yj2 � zj

Where yj1 is shorthand for xi if the first literal in the jth clause is the ith variable, and
shorthand for 1 � xi if the literal is the negation of the i variable. (Similarly for yj2.)

If MAX-2SAT denotes the number of clauses satisfied by the best assignment, then it is
no more than OPTf , the value of the above LP. Let us apply randomized rounding to the
fractional solution to get a 0/1 assignment. How good is it?

Claim: E[number of clauses satisfied] � 3

4

⇥ OPTf .
We show that the probability that the jth clause is satisfied is at least 3zj/4 and then

the claim follows by linear of expectation.
If the clause is of size 1, say xr, then the probability it gets satisfied is xr, which is at

least zj . Since the LP contains the constraint xr � zj , the probability is certainly at least
3zj/4.

Suppose the clauses is xr _ xs. Then zj  xr + xs and in fact it is easy to see that
zj = min {1, xr + xs} at the optimum solution: after all, why would the LP not make zj as
large as allowed; its goal is to maximize

P

j zj . The probability that randomized rounding
satisfies this clause is exactly 1 � (1 � xr)(1 � xs) = xr + xs � xrxs.

But xrxs  1

4

(xr + xs)2 (prove this!) so we conclude that the probability that clause j
is satisfied is at least zj � z2j /4 � 3zj/4. 2.

Remark: This algorithm is due to Goemans-Williamson, but the original 3/4-approximation
is due to Yannakakis. The 3/4 factor has been improved by other methods to 0.91. Again,
using PCP Theorems one can prove that 0.94-approximation is NP-hard.

7.3 Dependent randomized rounding: Virtual circuit routing

Often a simple randomized rounding produces a solution that makes no sense. Then one
must resort to a more dependent form of rounding whereby chunks of variables may be
rounded up or down in a correlated way. Now we see an example of this from a classic
paper of Raghavan and Tompson.

In networks that break up messages into packets, a virtual circuit is sometimes used
to provide quality of service guarantees between endpoints. A fixed path is identified and



39

reserved between the two desired endpoints, and all messages are sped over that fixed path
with minimum processing overhead.

Given the capacity of all network edges, and a set of endpoint pairs (i
1

, j
1

), (i
2

, j
2

), . . . , (ik, jk)
it is NP-hard to determine if there is a set of paths which provide a unit capacity link be-
tween each of these pairs and which together fit into the capacity constraints of the network.

Now we give an approximation algorithm where we assume that (a) a unit-capacity path
is desired between each given endpoint pair (b) the total capacity cuv of each edge is at
least d log n, where d is a su�ciently large constant.

We give a somewhat funny approximation. Assuming there exists an integral solution
that connects all k endpoint pairs and which uses at most 0.9 fraction of each edge’s capacity,
we give an integral solution that connects at least (1 � 1/e) fraction of the endpoints pairs
and does not exceed any edge’s capacity.

The idea is to write an LP. For each endpoint pair i, j that have to be connected and
each edge e = (u, v) we have a variable xi,j

uv that is supposed to be 1 if the path from i to
j uses the directed edge (u, v), and 0 otherwise. (Note that edges are directed.) Then for
each edge (u, v) we can add a capacity constraint

X

i,j:endpoints

xi,j
uv  cuv.

But since we can’t require variables to be 0/1 in an LP, we relax to 0  xi,j
uv  1. This

allows a path to be split over many paths (this will remind you of network flow if you have
seen it in undergrad courses). Of course, this seems all wrong since avoiding such splitting
was the whole point in the problem! Be patient just a bit more.

Furthermore we need the so-called flow conservation constraints. These say that the
fractional amount of paths leaving i and arriving at j is 1, and that paths never get stranded
in between.

P

v xij
uv =

P

v xij
vu 8u 6= i, j

P

v xij
uv � P

v xij
vu = 1 u = i

P

v xij
vu � P

v xij
uv = 1 u = j

Under our hypothesis about the problem, this LP is feasible and we get a fractional

solution
n

xi,j
uv

o

. These values can be seen as bits and pieces of paths lying strewn about

the network.
Let us first see that neither deterministic rounding nor simple randomized rounding is a

good idea. As shown in Figure 7.1 consider node u where xij
u v is 1/3 on three incoming edges

and 1/2 on two outgoing edges. Then deterministic rounding would round the incoming
edges to 0 and outgoing edges to 1, creating a bad situation where the path never enters
u but leaves it on two edges! Simple randomized rounding will also create a similar bad
situation with ⌦(1) (i.e., constant) probability. Clearly, it would be much better to round
along entire paths instead of piecemeal.

Flow decomposition: For each endpoint pair i, j we create a finite set of paths p
1

, p
2

, . . . ,
from i to j as well as associated weights wp

1

, wp
2

, . . . , that lie in [0, 1] and sum up to 1.

Furthermore, for each edge (u, v): xi,j
u,v = sum of weights of all paths among these that

contain u, v.



40

1/3$
1/3$

1/3$

1/2$

1/2$

Figure 7.1: A problematic case for deterministic or randomized rounding.

Flow decomposition is easily accomplished via depth first search. Just repeatedly find a
path from i to j in the weighted graph defined by the xij

uv’s: the flow conservation constraints
imply that this path can leave every vertex it arrives at except possibly at j. After you
find such a path from i to j subtract from all edges on it the minimum xij

uv value along this
path. This ensures that at least one xij

uv gets zeroed out at every step, so the process is
finite (specifically, finishes in O(mk) steps).

Randomized rounding: For each endpoint pair i, j pick a path from the above decom-
position randomly by picking it with probability proportional to its weight.

Part 1: We show that this satisfies the edge capacities approximately.
This follows from Cherno↵ bounds. The expected number of paths that use an edge

{u, v} is

X

i,j:endpoints

xi,j
u,v.

The LP constraint says this is at most cuv, and since cuv > d log n this is a sum of at least
d log n random variables. Cherno↵ bounds (see our earlier lecture) imply that this is at most
(1 + ✏) times its expectation for all edges with high probability. Cherno↵ bounds similarly
imply that the overall number of paths is pretty close to k. )

Part 2: We show that in the expectation, (1 � 1/e) fraction of endpoints get connected
by paths. Consider any endpoint pair. Suppose they are connected by t fractional paths
p
1

, p
2

, .. with weights w
1

, w
2

.. etc. Then
P

i wi = 1 since the endpoints were fractionally
connected. The probability that the randomized rounding will round all these paths down
to 0 is

Y

i

(1 � wi)  (
P

i

(1�w
i

)

t )t (Geometric mean  Arithmetic mean)

 (1 � 1/t)t  1/e.

The downside of this rounding is that some of the endpoint pairs may end up with zero
paths, whereas others may end up with 2 or more. We can of course discard extra paths.
(There are better variations of this approximation but covering them is beyond the scope
of this lecture.)



41

Remark: We have only computed the expectation here, but one can check using Markov’s
inequality that the algorithm gets arbitrarily close to this expectation with probability at
least 1/n (say).

Bibliography

1. New 3/4-approximation to MAX-SAT by M. X. Goemans and D. P. Williamson, SIAM
J. Discrete Math 656-666, 1994.

2. Randomized rounding: A technique for provably good algorithms and algorithmic
proofs by P. Raghavan and C. T. Tompson, Combinatorica pp 365-374 1987.

3. On the hardness of approximating minimum vertex cover by I. Dinur and S. Safra,
Annals of Math, pp 439485, 2005.

4. Approximately hard: the Unique Games Conjecture. by E. Klarreich.
Popular article on https://www.simonsfoundation.org/


