
Chapter 4

Hashing with real numbers and
their big-data applications

Using only memory equivalent to 5 lines of printed text, you can estimate with a
typical accuracy of 5 per cent and in a single pass the total vocabulary of Shake-
speare. This wonderfully simple algorithm has applications in data mining, esti-
mating characteristics of huge data flows in routers, etc. It can be implemented
by a novice, can be fully parallelized with optimal speed-up and only need minimal
hardware requirements. Theres even a bit of math in the middle!

Opening lines of a paper by Durand and Flajolet, 2003.

As we saw in Lecture 1, hashing can be thought of as a way to rename an address space.
For instance, a router at the internet backbone may wish to have a searchable database of
destination IP addresses of packets that are whizzing by. An IP address is 128 bits, so the
number of possible IP addresses is 2128, which is too large to let us have a table indexed
by IP addresses. Hashing allows us to rename each IP address by fewer bits. In Lecture 1
this hash was a number in a finite field (integers modulo a prime p). In recent years large
data algorithms have used hashing in interesting ways where the hash is viewed as a real
number. For instance, we may hash IP addresses to real numbers in the unit interval [0, 1].

Example 2 (Dartthrowing method of estimating areas) Suppose gives you a piece
of paper of irregular shape and you wish to determine its area. You can do so by pinning
it on a piece of graph paper. Say, it lies completely inside the unit square. Then throw a
dart n times on the unit square and observe the fraction of times it falls on the irregularly
shaped paper. This fraction is an estimator for the area of the paper.

Of course, the digital analog of throwing a dart n times on the unit square is to take a
random hash function from {1, . . . , n} to [0, 1] ⇥ [0, 1].

Strictly speaking, one cannot hash to a real number since computers lack infinite preci-
sion. Instead, one hashes to rational numbers in [0, 1]. For instance, hash IP addresses to
the set [p] as before, and then think of number “i mod p”as the rational number i/p. This
works OK so long as our method doesn’t use too many bits of precision in the real-valued
hash.

23

24

A general note about sampling. As pointed out in Lecture 3 using the random variable
”Number of ears,” the expectation of a random variable may never be attained at any point
in the probability space. But if we draw a random sample, then we know by Chebysev’s
inequality that the sample has chance at least 1 � 1/k2 of taking a value in the interval
[µ � k�, µ + k�] where µ, � denote the mean and variance respectively. Thus to get any
reasonable idea of µ we need � to be less than µ. But if we take t independent samples
(even pairwise independent will do) then the variance of the mean of these samples is �2/t.
Hence by increasing t we can get a better estimate of µ.

4.1 Estimating the cardinality of a set that’s too large to
store

Continuing with the router example, suppose the router wishes to maintain a count of the
number of distinct IP addresses seen in the past hour. There are many practical applications
for this, including but not limited to tra�c accounting, quality of service, detecting denial-
of-service (DoS) attacks.

The mathematical formalism is that we receive a stream of bit strings x
1

, x
2

, . . . , xn,
among which there are at most N distinct strings. We wish to estimate N , using very little
memory. (We’re aiming for using ⇡ log N memory.)

How might we go about solving the problem? The simplest thing to do would be to
store all IP addresses in some data structure as they are coming, and check whenever we
try to put the string in the data structure if it’s already there. However, this would clearly
take ⇥(N) memory. Another simple thing one could try would be to subsample the stream:
i.e. keep a string with probability p, and throw it away with probability 1 � p – then try to
estimate the number of distinct elements from the subsampled version. But to distinguish
between streams that look like a

1

, a
1

, . . . , a
1

| {z }

n-k times

, a
2

, . . . , ak, where n � k and a
1

, a
1

, a
1

, . . . , a
1

| {z }

n times

,

we would basically have to keep all the elements.
So what’s the small memory solution? We will draw inspiration from the quote at the

start of the lecture. We will take a hash function h that maps an IP address to a random real
number in [0, 1]. (For now let’s suppose that this is actually a random function.) Imagine
also having a register, such that whenever a packet xi whizzes by, we compute h(xi). If
h(xi) is less than the number currently stored in the register, then we rewrite the register
with xi.

Let Y be the random variable denoting the contents of the register at the end. (It is
a random variable because the hash function was chosen randomly. The packet addresses
are not random.) Realize that Y is nothing but the lowest value of h(xi) among all IP
addresses xi seen so far.

Suppose the number of distinct IP addresses seen is N . This is what we are trying to
estimate. We have the following lemma:

Lemma 4
E[Y] = 1

N+1

and the variance of Y satisfies Var[Y]  1

(N+1)

2

.

The expectation looks intuitively about right: the minimum of N random elements in
[0, 1] should be around 1/N .

25

Let’s do the expectation calculation. To do this, we need to calculate the PDF of the
distribution of the minimum of N random elements. The CDF is quite easy: Pr[Y  r] =
1�Pr[Y � r] = 1� (1� r)N , where the last line follows since minx

i

h(xi) � r if all elements
are mapped to numbers greater than r. To get the PDF, we just need to take the derivative
thereof – so Pr[Y = r] = N(1 � r)N�1. Then the expectation is just the integral

E[Y] =

Z

1

r=0

rN(1 � r)N�1dr =

Z

1

t=0

(1 � t)NtN�1dt =

Z

1

t=0

NtN�1dt �
Z

1

t=0

NtN =
1

N + 1

The variance calculation is very similar: we just use the fact that Var[Y] = E[Y 2] �
(E[Y])2, and both terms amount to integrals similar to the one above.

(Note there’s a slicker alternative proof for the expectation of Y . Imagine picking N +1
random numbers in [0, 1] and consider the chance that the (N +1)-st element is the smallest.
By symmetry this chance is 1/(N +1). But this chance is exactly the expected value of the
minimum of the first N numbers.)

Now we use our previous observation about sampling and variance reduction: suppose
we repeat the procedure above with k independent random hash functions h

1

, h
2

, . . . hk, and
the random variable corresponding to the register of the i-th hash function is Yi. Let Y is
be their mean. Then the variance of Y is 1/k(N + 1)2, in other words, k times lower than
the variance of each individual Yi. Thus if 1/k is less than ✏2/3 the standard deviation is
less than ✏/3(N + 1), whereas the mean is 1/(N + 1). Thus, by Chebyshev’s inequality

Pr



|Y � E[Y]| � 3 ⇥ ✏

3(N + 1)

�

 1

9

This means that with probability at least 8/9, the estimate 1/Y � 1 is within (1 + ✏) factor
of N .

Because we only need to store the value of the register corresponding to each hash
function, the memory usage is O(1

✏2
log N), which is what we wanted!

4.1.1 Pairwise independent hash functions

All this assumed that the hash functions are random functions from 128-bit numbers to
[0, 1]. Let’s now show that it su�ces to pick hash functions from a pairwise independent
family, albeit now yielding an estimate that is only correct up to some constant factor.
Specifically, we’ll modify the algorithm slightly to take k pairwise independent hashes and
consider the median of the registers as an estimate for 1

N . We will show that this estimate
lies in the interval [1

5N , 5

N] with high probability. (This of course, trivially gives a constant
factor estimate for N .)

For a particular hash function h, we’ll bound the probability that we hash N di↵erent IP
addresses, and the smallest hash is not in [1

5N , 5

N]. We will do this by individually bounding
the probability that it is less than 1

5N and bigger than 5

N , and union bound over these two
events.

First, let’s bound the probability that the smallest hash is less than 1

5N ? For each IP
address xi, Pr[h(xi) < 1

5N] is at most 1

5N , so by a union bound, the probability in question
is at most N ⇥ 1

5N = 1/5.

26

To bound the probability that the smallest hash is is bigger than 5/N , we have to do
something a little more complicated. Let x0

1

, x0
2

, . . . , x0
N be the N distinct IP addresses. Let

Zi be a random variable which is 1, if h(x0
i)  5/N , and 0 otherwise. Let Z =

PN
i=1

Zi. Then
notice that Z > 0 implies minx

i

h(xi)  5/N – or put a di↵erent way, minx
i

h(xi) � 5/N
implies Z = 0. So we just need to bound the probability that Z = 0.

Let’s inspect the random variable Z. First, E[Z] =
PN

i=1

E[Zi] = N ⇥ 5

N = 5. Second,

by pairwise independence, Var[Z] =
PN

i=1

Var[Zi]. However, Var[Zi] = E[Z2

i]�(E[Zi])2 
E[Z2

i] = E[Zi], where the last line follows since Zi is a 0-1 variable. Hence, Var[Z]  5 as
well. But then, we can use Chebyshev to conclude that Pr[Z = 0]  Pr[|Z �E[Z]| � 5]  1

5

By union bound then, the probability that the smallest hash is not in [1

5N , 5

N] is at most
2

5

.
Now, let’s see what happens when we take the median of the registers from multiple hash

functions. If the median is larger than 5/N , this means that at least half of the registers Yi

exceeded 5/N . But since the probability that the Yi exceeds 5/N is at most 2

5

, by Cherno↵,

this event happens with probability at most e�((3
5

)

2k 2

5

)/3. A similar calculation holds for
the probability that the median is smaller than 1

5N . Taking the number of hash functions
to be k = ⌦(1/ log �), we can make this probabiliy less than � for any � > 0.

4.2 Estimating document similarity

One of the aspects of the data deluge on the web is that often one finds duplicate copies of
the same thing. Sometimes the copies may not be exactly identical: for example mirrored
copies of the same page but some are out of date. The same news article or blog post may
be reposted many times, sometimes with editorial comments. By detecting duplicates and
near-duplicates internet companies can often save on storage by an order of magnitude.

We want to do significantly better than the trivial method of looking at all pairs of
documents and comparing them. (Doing computations which take quadratic time in the
total number of documents is completely infeasible, as it’s not unusual for the number of
documents in consideration to be on the order of billions.) Notice also the fact that we want
to detect ”near-duplicates” instead of duplicates makes the problem significantly harder: if
we just want to detect duplicates, we could simply hash the documents to a much smaller
set, and tag as duplicates only the ones that have collisions.

We present a technique called locality sensitive hashing such that the hash preserves
some information about the ”content” of a document. Two documents’ similarity can be
estimated by comparing their hashes. This is an example of a burgeoning research area
of hashing while preserving some semantic information. In general finding similar items
in databases is a big part of data mining (find customers with similar purchasing habits,
similar tastes, etc.). Today’s simple hash is merely a way to dip our toes in these waters.

The formal definition of a locality sensitive hash is the following: for a given similarity
measure sim(A, B) defined on the set of documents, a locality-sensitive hash family H is
hash family satisfying Pr

hash2H[hash(A) = hash(B)] = sim(A, B).
Let’s consider one concrete similarity measure and construct a locality-sensitive hash

family for it. If we think of a document as a set: the set of words appearing in it, the
Jaccard similarity of documents/sets A, B is defined to be |A \ B| / |A [B|. (This is 1 i↵

27

A = B and 0 i↵ the sets are disjoint.)
Basic idea: pick a random hash function mapping the underlying universe of elements

to [0, 1]. Define the hash of a set A to be the minimum of h(x) over all x 2 A. Then
by symmetry, Pr[hash(A) = hash(B)] is exactly the Jaccard similarity. (Note that if two
elements x, y are di↵erent then Pr[h(x) = h(y)] is 0 when the hash is real-valued. Thus the
only possibility of a collision arises from elements in the intersection of A, B.) Thus one
could pick k random hash functions and take the fraction of instances of hash(A) = hash(B)
as an estimate of the Jaccard similarity. This has the right expectation but we need to repeat
with k di↵erent hash functions to get a better estimate.

The analysis goes as follows. Suppose we are interested in flagging pairs of documents
whose Jaccard-similarity is at least 0.9. Then we compute k hashes and flag the pair if at
least 0.9 � ✏ fraction of the hashes collide. Cherno↵ bounds imply that if k = ⌦(1/✏2) this
flags all document pairs that have similarity at least 0.9 and does not flag any pairs with
similarity less than 0.9 � 3✏.

To make this method more realistic we need to replace the idealized random hash func-
tion with a real one and analyse it. That is beyond the scope of this lecture. Indyk showed
that it su�ces to use a k-wise independent hash function for k = ⌦(log(1/✏)) to let us
estimate Jaccard-similarity up to error ✏. Thorup recently showed how to do the estimation
with pairwise independent functions. This analysis seems rather sophisticated; let me know
if you happen to figure it out.

We remark though that there’s a dose of sublety as to which similarity measure admit
a locality sensitive hash. We picked a nice measure here, but tweaking it slightly results in
one which does not have a locality sensitive hash family attached to it. For instance, the
so called Dice’s coe�cient sim

Dice

(A, B) = |A\B|
1

2

(|A|+|B|) doesn’t have one. Trying to prove this

yourself is a good exercise, but the relevant reference is the paper by Charikar listed below.

Bibliography

1. Broder, Andrei Z. (1997), On the resemblance and containment of documents, Com-
pression and Complexity of Sequences: Proceedings, Positano, Amalfitan Coast, Salerno,
Italy, June 11-13, 1997.

2. Broder, Andrei Z.; Charikar, Moses; Frieze, Alan M.; Mitzenmacher, Michael (1998),
Min-wise independent permutations, Proc. 30th ACM Symposium on Theory of Com-
puting (STOC ’98).

3. Charikar, Moses S. Similarity estimation techniques from rounding algorithms, In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp.
380-388. ACM, 2002.

4. Gurmeet Singh, Manku; Das Sarma, Anish (2007), Detecting near-duplicates for web
crawling, Proceedings of the 16th international conference on World Wide Web, ACM.

5. Indyk, P (1999). A small approximately min-wise independent family of hash func-
tions. Proc. ACM SIAM SODA.

6. Thorup, M. (2013). http://arxiv.org/abs/1303.5479.

