
Chapter 21

Counting and Sampling Problems

Today’s topic of counting and sampling problems is motivated by computational problems
involving multivariate statistics and estimation, which arise in many fields. For instance, we
may have a probability density function �(x) where x 2 <n. Then we may want to compute
moments or other parameters of the distribution, e.g.

R

x3�(x)dx. Or, we may have a model
for how links develop faults in a network, and we seek to compute the probability that two
nodes i, j stay connected under this model. This is a complicated probability calculation.

In general, such problems can be intractable (eg, NP-hard). The simple-looking problem
of integrating a multivariate function is NP-hard in the worst case, even when we have
an explicit expression for the function f(x

1

, x
2

, . . . , xn) that allows f to be computed in
polynomial (in n) time.

Z

1

x
1

=0

Z

1

x
2

=0

· · ·
Z

1

x
n

=0

f(x
1

, x
2

, . . . , xn)dx
1

dx
2

. . . dxn.

In fact even approximating such integrals can be NP-hard, as shown by Koutis (2003).
Valiant (1979) showed that the computational heart of such problems is combinatorial

counting problems. The goal in such problems is to compute the size of a set S where we
can test membership in S in polynomial time. The class of such problems is called]P .

Example 49]SAT is the problem where, given a boolean formula ', we have to compute
the number of satisfying assignments to '. Clearly it is NP-hard since if we can solve it, we
can in particular solve the decision problem: decide if the number of satisfying assignments
at least 1.

]CYCLE is the problem where, given a graph G = (V, E), we have to compute the
number of cycles in G. Here the decision problem (“is G acyclic?”) is easily solvable using
breadth first search. Nevertheless, the counting problem turns out to be NP-hard.

]SPANNINGTREE is the problem where, given a graph G = (V, E), we have to compute
the number of spanning trees in G. This is known to be solvable using a simple determinant
computation (Kircho↵’s matrix-tree theorem) since the 19th century.

Valiant’s class]P captures most interesting counting problems. Many of these are NP-
hard, but not all. You can learn more about them in COS 522: Computational Complexity,
usually taught in the spring semester. 2

129

130

It is easy to see that the above integration problem can be reduced to a counting problem
with some loss of precision. First, recall that integration basically involves summation: we
appropriately discretize the space and then take the sum of the integrand values (assuming
in each cell of space the integrand doesn’t vary much). Thus the integration reduces to
some sum of the form

X

x
1

2[N],x
2

2[N],...,x
n

2[N]

g(x
1

, x
2

, . . . , xn),

where [N] denotes the set of integers in 0, 1, . . . , N . Now assuming g(·) � 0 this is easily
estimated using sizes of of the following sets:

{(x, c) : x 2 [N]n; c  g(x)  c + "} .

Note if g is computable in polynomial time then we can test membership in this set in
polynomial time given (x, c, ") so we’ve shown that integration is a]P problem.

We will also be interested in sampling a random element of a set S. In fact, this will
turn out to be intimately related to the problem of counting.

21.1 Counting vs Sampling

We say that an algorithm is an approximation scheme for a counting problem if for every
" > 0 it can output an estimate of the size of the set that is correct within a multiplicative
factor (1 + "). We say it is a randomized fully polynomial approximation scheme (FPRAS)
if it is randomized and it runs in poly(n, 1/", log 1/�) time and has probability at least
(1 � �) of outputting such an answer. We will assume � < 1/poly(n) so we can ignore the
probability of outputting an incorrect answer.

An fully polynomial-time approximate sampler for S is one that runs in poly(n, 1/", log 1/�)

and outputs a sample u 2 S such that
P

u2S
�

�

�

Pr[u is output] � 1

|S|
�

�

�

 ".

Theorem 38 (Jerrum, Valiant, Vazirani 1986)
For “nicely behaved ”counting problems (the technical term is “downward self-reducible”)
sampling in the above sense is equivalent to counting (i.e., a algorithm for one task can be
converted into one for the other).

Proof: For concreteness, let’s prove this for the problem of counting the number of satisfy-
ing assignments to a boolean formula. Let]' denote the number of satisfying assignments
to formula '.

Sampling) Approximate counting: Suppose we have an algorithm that is an ap-
proximate sampler for the set of satisfying assignments for any formula. For now assume
it is an exact sampler instead of approximate. Take m samples from it and let p

0

be the
fraction that have a 0 in the first bit xi, and p

1

be the fraction that have a 1. Assume
p
0

� 1/2. Then the estimate of p
0

is correct up to factor (1 + 1/
p

m) by Cherno↵ bounds.
But denoting by '|x

1

=0

the formula obtained from ' by fixing x
1

to 0, we have

p
0

=
]'|x

1

=0

]'
.

131

Since we have a good estimate of p
0

, to get a good estimate of]' it su�ces to have a good
estimate of]'|x

1

=0

. So produce the formula '|x
1

=0

obtained from ' by fixing x
1

to 0, then
use the same algorithm recursively on this smaller formula to estimate N

0

, the value of
]'|x

1

=0

. Then output N
0

/p
0

as your estimate of]'. (Base case n = 1 can be solved exactly
of course.)

Thus if Errn is the error in the estimate for formulae with n variables, this satisfies

Errn  (1 + 1/
p

m)Errn�1

,

which solves to Errn  (1 + 1/
p

m)n. By picking m >> n2/"2 this error can be made less
than 1 + ". It is easily checked that if the sampler is not exact but only approximate, the
algorithm works essentially unchanged, except the sampling error also enters the expression
for the error in estimating p

0

.

Approximate counting) Sampling: This involves reversing the above reasoning.
Given an approximate counting algorithm we are trying to generate a random satisfying
assignment. First use the counting algorithm to approximate]'|x

1

=0

and]' and take the
ratio to get a good estimate of p

0

, the fraction of assignments that have 0 in the first bit.
(If p

0

is too small, then we have a good estimate of p
1

= 1 � p
0

.) Now toss a coin with
Pr[heads] = p

0

. If it comes up heads, output 0 as the first bit of the assignment and then
recursively use the same algorithm on '|x

1

=0

to generate the remaining n � 1 bits. If it
comes up tails, output 1 as the first bit of the assignment and then recursively use the same
algorithm on '|x

1

=1

to generate the remaining n � 1 bits.
Note that the quality " of the approximation su↵ers a bit in going between counting

and sampling. 2

21.1.1 Monte Carlo method

The classical method to do counting via sampling is the Monte Carlo method. A simple
example is the ancient method to estimate the area of a circle of unit radius. Draw the
circle in a square of side 2. Now throw darts at the square and measure the fraction that
fall in the circle. Multiply that fraction by 4 to get the area of the circle.

Figure 21.1: Monte Carlo (dart throwing) method to estimate the area of a circle. The
fraction of darts that fall inside the disk is ⇡/4.

Now replace “circle”with any set S and “square”with any set ⌦ that contains S and can
be sampled in polynomial time. Then just take many samples from ⌦ and just observe the

132

fraction that are in S. This is an estimate for |S|. The problem with this method is that
usually the obvious ⌦ is much bigger than S, and we need |⌦| / |S| samples to get any that
lie in S. (For instance the obvious ⌦ for computing]' is the set of all possible assignments,
which may be exponentially bigger.)

21.2 Dyer’s algorithm for counting solutions to KNAPSACK

The Knapsack problem models the problem faced by a kid who is given a knapsack and
told to buy any number of toys that fit in the knapsack. The problem is that not all toys
give him the same happiness, so he has to trade o↵ the happiness received from each toy
with its size; toys with high happiness/size ratio are prefered. Turns out this problem is
NP-hard if the numbers are given in binary. We are interested in a counting version of the
problem that uses just the sizes.

Definition 10 Given n weights w
1

, w
2

, . . . , wn and a target weight W , a feasible solution
to the knapsack problem is a subset T such that

P

i2T wi  W .

We wish to approximately count the number of feasible solutions. This had been the subject
of some very technical papers, until M. Dyer gave a very elementary solution in 2003.

First, we note that the counting problem can be solved exactly in O(nW) time, though
of course this is not polynomial since W is given to us in binary, i.e. using log W bits.
The idea is dynamic programming. Let Count(i, U) denote the number of feasible solutions
involving only the first i numbers, and whose total weight is at most U . The dynamic
programming follows by observing that there are two types of solutions: those that involve
the ith element, and those that don’t. Thus

Count(i, U) =

8

>

<

>

:

Count(i � 1, U � wi) + Count(i � 1, U)

1 if i = 1 and w
1

 U

0 if i = 1 and w
1

> U

Denoting by S the set of feasible solutions, |S| = Count(n, W). But as observed,
computing this exactly is computationally expensive and not polynomial-time. Dyer’s next
idea is to find a set ⌦ containing S but at most n times bigger. This set ⌦ can be exactly
counted as well as sampled from. So then by the Monte Carlo method we can estimate the
size of S in polynomial time by drawing samples from ⌦.

⌦ is simply the set of solutions to a Knapsack instance in which the weights have been
rounded to lie in [0, n2]. Specifically, let w0

i = bw
i

n2

W c and W 0 = n2. Then ⌦ is the set of
feasible solutions to this modified knapsack problem.

claim 1: S ✓ ⌦. (Consequently, |S|  |⌦|.)
This follows since if T 2 S is a feasible solution for the original problem, then

P

i w
0
i 

P

i win2/W  n2, and so T is a feasible solution for the rounded problem.

claim 2: |⌦|  n |S|.
To prove this we give a mapping g from ⌦ to S that is at most n-to-1.

g(T 0) =

(

= T 0 if T 0 2 S

= T 0 \ {j} (else) where j = index of element in T 0 with highest value of w0
j

133

In the second case note that this element j satisfies wj > W/n which implies w0
j � n.

Clearly, g is at most n-to-1 since a set T in S can have at most n pre-images under g.
Now let’s verify that T = g(T 0) lies in S.

X

i2T
wi 

X

i2T

W

n2

(w0
i + 1)

 W

n2

⇥ (W 0 � w0
j + n � 1)

 W (since W 0 = n2 and w0
j � n)

which implies T 2 S. 2

Sampling algorithm for ⌦ To sample from ⌦, use our earlier equivalence of approximate
counting and sampling. That algorithm needs an approximate count not only for |⌦| but
also for the subset of ⌦ that contain the first element. This is another knapsack problem
and can thus be solved by Dyer’s dynamic programming. And same is true for instances
obtained in the recursion.

Bibliography

1. On the Hardness of Approximate Multivariate Integration. I. Koutis, Proc. Approx-
Random 2013. Springer Verlag.

2. The complexity of enumeration and reliability problems. L. Valiant. SIAM J. Com-
puting, 8:3 (1979), pp.410-421.

