
Chapter 17

Oracles, Ellipsoid method and
their uses in convex optimization

Oracle: A person or agency considered to give wise counsel or prophetic pre-
dictions or precognition of the future, inspired by the gods.

Recall that Linear Programming is the following problem:

maximize cTx

Ax b

x � 0

where A is a m ⇥ n real constraint matrix and x, c 2 Rn. Recall that if the number of bits
to represent the input is L, a polynomial time solution to the problem is allowed to have a
running time of poly(n, m, L).

The Ellipsoid algorithm for linear programming is a specific application of the ellipsoid
method developed by Soviet mathematicians Shor(1970), Yudin and Nemirovskii(1975).
Khachiyan(1979) applied the ellipsoid method to derive the first polynomial time algorithm
for linear programming. Although the algorithm is theoretically better than the Simplex
algorithm, which has an exponential running time in the worst case, it is very slow practically
and not competitive with Simplex. Nevertheless, it is a very important theoretical tool for
developing polynomial time algorithms for a large class of convex optimization problems,
which are much more general than linear programming.

In fact we can use it to solve convex optimization problems that are even too large to
write down.

17.1 Linear programs too big to write down

Often we want to solve linear programs that are too large to even write down (or for that
matter, too big to fit into all the hard drives of the world).

105

106

Example 38 Semidefinite programming (SDP) uses the convex set of PSD matrices in <n.
This set is defined by the following infinite set of constraints: aTXa � 0 8a 2 Ren. This
is really a linear constraint on the Xij ’s:

X

ij

Xijaiaj � 0.

Thus this set is defined by infinitely many linear constraints.

Example 39 (Held-Karp relaxation for TSP) In the traveling salesman problem (TSP)
we are given n points and distances dij between every pair. We have to find a salesman
tour, which is a sequence of hops among the points such that each point is visited exactly
once and the total distance covered is minimized.

An integer programming formulation of this problem is:

min
P

ij dijXij

Xij 2 {0, 1} 8i, j
P

i2S,j2S Xij � 2 8S ✓ V, S 6= ;, V (subtour elimination)

The last constraint is needed because without it the solution could be a disjoint union of
subtours, and hence these constraints are called subtour elimination constraints. The Held-
Karp relaxation relaxes the first constraint to 0 Xij 1. Now this is a linear program,
but it has 2n + n2 constraints! We cannot a↵ord to write them down (for then we might as
well use the trivial exponential time algorithm for TSP).

Clearly, we would like to solve such large (or infinite) programs, but we need a di↵erent
paradigm than the usual one that examines the entire input.

17.2 A general formulation of convex programming

A convex set K in <n is a subset such that for every x, y 2 K and � 2 [0, 1] the point
�x + (1 � �)y is in K. (In other words, the line joining x, y lies in K.) If it is compact and
bounded we call it a convex body. It follows that if K

1

, K
2

are both convex bodies then so
is K

1

\ K
2

.
A general formulation of convex programming is

min cTx

x 2 K
where K is a convex body.

Example 40 Linear programming is exactly this problem where K is simply the polytope
defined by the constraints.

Example 41 In the last lecture we were interested in semidefinite programming, where K
= set of PSD matrices. This is convex since if X, Y are psd matrices then so is (X + Y)/2.
The set of PSD matrices is a convex set but extends to 1. In the examples last time it

107

was finite since we had a constraint like Xii = 1 for all i, which implies that |Xij | 1 for
all i, j. Usually in most settings of interest we can place some a priori upper bound on the
desired solution that ensures K is a finite body.

In fact, since we can use binary search to reduce optimization to decision problem, we
can replace the objective by a constraint cTx � c

0

. Then we are looking for a point in
the convex body K \ �

x : cTx � c
0

, which is another convex body K0. We conclude that
convex programming boils down to testing a convex body for emptiness (i.e., whether it has
any point in it).

Find a point in K (if such a point exists),

where K is a convex body.
Here are other examples of convex sets and bodies.

1. The whole space Rn is trivially an infinite convex set.

2. Hypercube length l is the set of all x such that 0 xi l, 1 i n.

3. Ball of radius r around the origin is the set of all x such that
n
X

i=1

x2

i r2.

17.2.1 Presenting a convex body: separation oracles and bounding boxes

Since we are talking about solving LPs too large to even write down, we need a way to work
with a convex body K without knowing its full description. The simplest way to present a
body to the algorithm is via a membership oracle: a black-box program that, given a point
x, tells us if x 2 K. We will work with a stronger version of the oracle, which relies upon
the following fact.

Figure 17.1: Farkas’s Lemma: Between every convex body and a point outside it, there’s a
hyperplane

Farkas’s Lemma: If K ✓ Rn is a convex set and p 2 Rn is a point, then one of the
following holds
(i) p 2 K

108

(ii) there is a hyperplane that separates p from K. (Recall that a hyperplane is the set of
points satisfying a linear equation of the form ax = b where a, x, b 2 Rn.)

This Lemma is intuitively clear but the proof takes a little formal math and is omitted.
This prompts the following definition of a polynomial time Separating Oracle.

Definition 9 A polynomial time Separation Oracle for a convex set K is a procedure
which given p, either tells that p 2 K or returns a hyperplane that separates p and all of K.
The procedure runs in polynomial time.

Example 42 Consider the polytope defined by the Held-Karp relaxation. We are given a
candidate solution P = (Pij). Suppose P

12

= 1.1. Then it violates the constraint X
12

 1,
and thus the hyperplane X

12

= 1 separates the polytope from P .
Thus to check that it lies in the polytope defined by all the constraints, we first check

that
P

j Pij = 2 for all i. This can be done in polynomial time. If the equality is violated
for any i then that is a separating hyperplane.

If all the other constraints are satisfied, we finally turn to the subtour elimination
constraints. We construct the weighted graph on n nodes where the weight of edge {i, j}
is Pij . We compute the minimum cut in this weighted graph. The subtour elimination
constraints are all satisfied i↵ the minimum cut S, S has capacity � 2. If the mincut S, S
has capacity less than 2 then the hyperplane

X

i2S,j2S
Xij = 2,

has P on the < 2 side and the Held-Karp polytope on the � 2 side.

Thus you can think of a separation oracle as providing a “letter of rejection”to the point
outside it explaining why it is not in the body K.

Example 43 For the set of PSD matrices, the separation oracle is given a matrix P . It
computes eigenvalues and eigenvectors to check if P only has nonnegative eigenvalues. If
not, then it takes an eigenvector a corresponding to a negative eigenvalue and returns the
hyperplane

P

ij Xijaiaj = 0. (Note that ai’s are constants here.) Then the PSD matrices
are on the � 0 side and P is on the < 0 side.

A separation oracle is not su�cient to allow the algorithm to test the body for nonempti-
ness in finite time. Each time the algorithm questions the oracle about a point x, the oracle
could just answer x 62 K, since the convex body could be further from the origin than all
the (finitely many) points that the algorithm has queried about thus far. After all, space is
infinite!

Thus the algorithm needs some very rough idea of where K may lie. It needs K to lie
in some known bounding box. The bounding box could be a cube, sphere etc. For example,
in the TSP case we see that all Xij lie in [0, 1], which means that the polytope lies in the
unit cube.

The Ellipsoid method will use an ellipsoid as a bounding box.

109

17.3 Ellipsoid Method

The Ellipsoid algorithm solves the basic problem of finding a point (if one exists) in a
convex body K. The basic idea is divide and conquer. At each step the algorithm asks the
separation oracle about a particular point p. If p is in K then the algorithm can declare
success. Otherwise the algorithm is able to divide the space into two (using the hyperplane
provided by the separation oracle) and recurse on the correct side. (To quote the classic
GLS text: How do you catch a lion in the Sahara? Fence the Sahara down the middle.
Wait for a passerby and ask which side the lion is on. Then continue on that side of the
fence. Do this until you’ve found the lion, or the fenced area is too small to contain a lion
in which case you know there was no lion to begin with.

The only problem is to make sure that the algorithm makes progress at every step. After
all, space is infinite and the body could be anywhere it. Cutting down an infinite set into
two still leaves infinite sets. To ensure progress we use the notion of the containing Ellipsoid
of a convex body.

An axis aligned ellipsoid is the set of all x such that

n
X

i=1

x2

i

�2

i

 1,

where �i’s are nonzero reals. in 3D this is an egg-like object where a
1

, a
2

, a
3

are the radii
along the three axes (see Figure 17.2). A general ellipsoid in Rn can be represented as

(x � a)TB(x � a) 1,

where B is a positive semidefinite matrix. (Being positive semidefinite means B can be
written as B = AAT for some n⇥n real matrix A. This is equivalent to saying B = Q�1DQ,
where Q is a unitary and D is a diagonal matrix with all positive entries.)

Figure 17.2: 3D-Ellipsoid and its axes

The convex body K is presented by a membership oracle, and we are told that the body
lies somewhere inside some ellipsoid E

0

whose description is given to us. At the ith iteration
algorithm maintains the invariant that the body is inside some ellipsoid Ei. The iteration
is very simple.

Let p = central point of Ei. Ask the oracle if p 2 K. If it says ”Yes,” declare succes.
Else the oracle returns some halfspace aTx � b p that contains K whereas p lies on the other
side. Let Ei+1

= minimum containing ellipsoid of the convex body Ei \ �

x : aTx � b

.

110

Figure 17.3: Couple of runs of the Ellipsoid method showing the tiny convex set in blue
and the containing ellipsoids. The separating hyperplanes do not pass through the centers
of the ellipsoids in this figure.

The running time of each iteration depends on the running time of the separation oracle
and the time required to find Ei+1

. For linear programming, the separation oracle runs in
O(mn) time as all we need to do is check whether p satisfies all the constraints, and return
a violating constraint as the halfspace (if it exists). The time needed to find Ei+1

is also
polynomial by the following non-trivial lemma from convex geometry.

Lemma 29
The minimum volume ellipsoid surrounding a half ellipsoid (i.e. Ei

T

H+ where H+ is a
halfspace as above) can be calculated in polynomial time and

V ol(Ei+1

)
✓

1 � 1

2n

◆

V ol(Ei)

Thus after t steps the volume of the enclosing ellipsoid has dropped by (1 � 1/2n)t
exp(�t/2n).

Technically speaking, there are many fine points one has to address. (i) The Ellipsoid
method can never say unequivocally that the convex body was empty; it can only say after
T steps that the volume is less than exp(�T/2n). In many settings we know a priori that
the volume of K if nonempty is at least exp(�n2) or some such number, so this is good
enough. (ii) The convex body may be low-dimensional. Then its n-dimensional volume is
0 and the containing ellipsoid continues to shrink forever. At some point the algorithm has
to take notice of this, and identify the lower dimensional subspace that the convex body
lies in, and continue in that subspace.

As for linear programming can be shown that for a linear program which requires L bits
to represent the input, it su�ces to have volume of E

0

= 2c2nL (since the solution can be
written in c

2

nL bits, it fits inside an ellipsoid of about this size) and to finish when volume
of Et = 2�c

1

nL for some constants c
1

, c
2

, which implies t = O(n2L). Therefore, the after
O(n2L) iterations, the containing ellipsoid is so small that the algorithm can easily ”round”
it to some vertex of the polytope. (This number of iterations can be improved to O(nL)
with some work.) Thus the overall running time is poly(n, m, L). For a detailed proof of the
above lemma and other derivations, please refer to Santosh Vempala’s notes linked from the

111

webpage. The classic [GLS] text is a very readable yet authoritative account of everything
related (and there’s a lot) to the Ellipsoid method and its variants.

To sum up, the importance of the Ellipsoid method is that it allows you to see at a
glance that a convex optimization problem is solvable in polynomial time: (a) Is there a
polynomial-time separation oracle? (b) Can we give a rough idea of where the body lies:
give a bounding ellipsoid whose volume is only exp(poly(n)) times the volume of the body
(assuming the body is nonempty)?

Under these minimal conditions, the problem can be solved in polynomial time!

bibliography

[GLS] M. Groetschel, L. Lovasz, A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer 1993.

