
Chapter 15

Semidefinite Programs (SDPs) and
Approximation Algorithms

Recall that a set of points K is convex if for every two x, y 2 K the line joining x, y,
i.e., {�x + (1 � �)y : � 2 [0, 1]} lies entirely inside K. A function f : <n ! < is convex if
f(x+y

2

)  1

2

(f(x)+f(y)). It is called concave if the previous inequality goes theother way. A
linear function is both convex and concave. A convex program consists of a convex function
f and a convex body K and the goal is to minimize f(x) subject to x 2 K. Is is a vast
generalization of linear programming and like LP, can be solved in polynomial time under
fairly general conditions on f, K. Today’s lecture is about a special type of convex program
called semidefinite programs.

Recall that a symmetric n ⇥ n matrix M is positive semidefinite (PSD for short) i↵ it
can be written as M = AAT for some real-valued matrix A (need not be square). It is a
simple exercise that this happens i↵ every eigenvalue is nonnegative. Another equivalent
characterization is that there are n vectors u

1

, u
2

, . . . , un such that Mij = hui, uji. Given
a PSD matrix M one can compute such n vectors in polynomial time using a procedure
called Cholesky decomposition.

Lemma 25
The set of all n ⇥ n PSD matrices is a convex set in <n2

.

Proof: It is easily checked that if M
1

and M
2

are PSD then so is M
1

+ M
2

and hence so
is 1

2

(M
1

+ M
2

). 2

Now we are ready to define semidefinite programs. These are very useful in a variety
of optimization settings as well as control theory. We will use them for combinatorial
optimization, specifically to compute approximations to some NP-hard problems. In this
respect SDPs are more powerful than LPs.
View 1: A linear program in n2 real valued variables Yij where 1  i, j  n, with the
additional constraint “Y is a PSD matrix.”
View 2: A vector program where we are seeking n vectors u

1

, u
2

, . . . , un 2 <n such that
their inner products hui, uji satisfy some set of linear constraints.

Clearly, these views are equivalent.

89

90

Exercise: Show that every LP can be rewritten as a (slightly larger) SDP. The idea is
that a diagonal matrix, i.e., a matrix whose o↵diagonal entries are 0, is PSD i↵ the entries
are nonnegative.

Question: Can the vectors u
1

, . . . , un in View 2 be required to be in <d for d < n?
Answer: This is not known and imposing such a constraint makes the program nonconvex.
(The reason is that the sum of two matrices of rank d can have rank higher than d.)

15.1 Geometrization of Combinatorial Problems, and Max
Cut

Given an n-vertex graph G = (V, E) find a cut (S, S) such that you maximise E(S, S).
The exact characterization of this problem is to find x

1

, x
2

, . . . , xn 2 {�1, 1} (which
thus represent a cut) so as to maximise

X

{i,j}2E

1

4
|xi � xj |2.

This works since an edge contributes 1 to the objective i↵ the endpoints have opposite signs.
The SDP relaxation is to find vectors u

1

, u
2

, . . . , un such that |ui|2
2

= 1 for all i and so
as to maximise

X

{i,j}2E

1

4
|vi � vj |2.

This is a relaxation since every ±1 solution to the problem is also a vector solution where
every ui is ±v

0

for some fixed unite vector v
0

.
Thus when we solve this SDP we get n vectors, then the value of the objective OPTSDP

is at least as large as the capacity of the max cut. How do we get a cut out of these vectors?
The following is the simplest rounding one can think of. Pick a random vector z. If hui, zi
is positive, put it in S and otherwise in S. Note that this is the same as picking a random
hyperplane passing through the origin and partitioning the vertices according to which side
of the hyperplane they lie on.

Theorem 26 (Goemans-Williamson’94)
The expected number of edges in the cut produced by this rounding is at least 0.878.. times
OPTSDP .

Proof: The rounding is essentially picking a random hyperplane through the origin and
vertices i, j fall on opposite sides of the cut i↵ ui, uj lie on opposite sides of the hyperplane.
Let’s estimate the probability they end up on opposite sides. This may seem a di�cult n-
dimensional calculation, until we realize that there is a 2-dimensional subspace defined by
ui, uj , and all that matters is the intercept of the random hyperplane with this 2-dimensional
subspace, which is a random line in this subspace. Specifically ✓ij be the angle between ui

and uj . Then the probability that they fall on opposite sides of this random line is ✓ij/⇡.
Thus by linearity of expectations,

E[Number of edges in cut] =
X

{i,j}2E

✓ij
⇡

. (15.1)

91

ui#

ui#

Θij#

Figure 15.1: SDP solutions are unit vectors and they are rounded to ±1 by using a random
hyperplane through the origin. The probability that i, j end up on opposite sides of the cut
is proportional to ⇥ij , the angle between them.

How do we relate this to OPTSDP ? We use the fact that hui, uji = cos ✓ij to rewrite
the objective as

X

{i,j}2E

1

4
|vi � vj |2 =

X

{i,j}2E

1

4
(|vi|2 + |vj |2 � 2hvi, vji) =

X

{i,j}2E

1

2
(1 � cos ✓ij). (15.2)

This seems hopeless to analyse for us mortals: we know almost nothing about the graph or
the set of vectors. Luckily Goemans and Williamson had the presence of mind to verify the
following in Matlab: each term of (15.1) is at least 0.878.. times the corresponding term of
(15.2)! Specifically, Matlab shows that for all

2✓

⇡(1 � cos ✓)
� 0.878 8✓ 2 [0, ⇡]. (15.3)

QED 2

The saga of 0.878... The GW paper came on the heels of the PCP Theorem (1992)
which established that there is a constant " > 0 such that (1 � ")-approximation to MAX-
CUT is NP-hard. In the ensuing few years this constant was improved. Meanwhile, most
researchers hoped that the GW algorithm could not be optimal. The most trivial relaxation,
the most trivial rounding, and an approximation ratio derived by Matlab calculation: it
all just didn’t smell right. However, in 2005 Khot et al. showed that Khot’s unique games
conjecture implies that the GW algorithm cannot be improved by any polynomial-time
algorithm. (Aside: not all experts believe the unique games conjecture.)

15.2 0.878-approximation for MAX-2SAT

We earlier designed approximation algorithms for MAX-2SAT using LP. The SDP relax-
ation gives much tighter approximation than the 3/4 we achieved back then. Given a 2CNF
formula on n variables with m clauses, we can express MAX-2SAT as a quadratic optimiza-
tion problem. We want x2

i = 1 for all i (hence xi is ±1; where +1 corresponds to setting the

92

variable yi to true) and we can write a quadratic expression for each clause expressing that
it is satisfied. For instance if the clause is yi _yj then the expression is 1� 1

4

(1�xi)(1�xj).
It is 1 if either of xi, xj is 1 and 0 else.

Representing this expression directly as we did for MAX-CUT is tricky because of the
”1” appearing in it. Instead we are going to look for n + 1 vectors u

0

, u
1

, . . . , un. The first
vector u

0

is a dummy vector that stands for ”1”. If ui = u
0

then we think of this variable
being set to True and if ui = �u

0

we think of the variable being set to False. Of course, in
general hui, u0

i need not be ±1 in the optimum solution.
So the SDP is to find vectors satisfying |ui|2 = 1 for all i so as to maximize

P

clause l vl
where vl is the expression for lth clause. For instance if the clause is yi _ yj then the
expression is

1 � 1

4
(u

0

� ui) · (u
0

� uj) =
1

4
(1 + u

0

· uj) +
1

4
(1 + u

0

· ui) +
1

4
(1 � ui · uj).

This is a very Goemans-Williamson like expression, except we have expressions like
1 + u

0

· ui whereas in MAX-CUT we have 1 � ui · uj . Now we do Goemans-Williamson
rounding. The key insight is that since we round to ±1, each term 1 + ui · uj becomes 2

with probability 1 � ✓
ij

⇡ = ⇡�✓
ij

⇡ and is 0 otherwise. Similarly, 1 � ui · uj becomes 2 with
probability ✓ij/⇡ and 0 else.

Now the term-by-term analysis used for MAX-CUT works again once we realize that
(15.3) also implies (by substituting ⇡ � ✓ for ✓ in the expression) that 2(⇡�✓)

⇡(1+cos ✓) � 0.878 for

✓ 2 [0, ⇡]. We conclude that the expected number of satisfied clauses is at least 0.878 times
OPTSDP .

15.3 Other uses of SDPs: Matrix design and Control Theory

SDPs can be used as a tool for design of appropriate matrices. For instance, suppose we
desire an n ⇥ n matrix M whose entries satisfy some linear constraints, and at the same
time want the smallest eigenvalue of M to be as large as possible. This is just an SDP since
we can just seek to maximise � such that M ��I is psd. This works since M ��I is psd i↵
xT (M � �I)x � 0 for every vector x, which means xTMx

xTX
� �, i.e. the minimum eigenvalue

of M is at least �.
Such matrix design problems arise in control theory, a field of applied mathematics

concerned with control of a system in presence of environmental perturbation. (Think
automatic helicopter control.) In Figure 15.2, the system state is represented by a vec-
tor, and so is the set of environmental variables at the current time. The controller is a
transformation of these variables into the next state of the system.

In full generality this entire picture represents a dynamical system capable of very
complicated behavior. The goal in control theory is to design a well-behaved controller that
makes the behavior predictable and stable. The simplest case is a controller that implements
a linear transformation, in other words a matrix. Properties of this matrix —e.g. ratio of
largest and smallest eigenvalues is modest, a property called condition number— relate to
this, and semidefinite programming gives a way to design such matrices.

Figure 15.2: A typical system studied in control theory. The controller tries to maintain the
system in some region of possible states, irrespective of disturbances from the environment.

93

