Chapter 14

SVD, Power method, and Planted
Graph problems (4 eigenvalues of
random matrices)

Today we continue the topic of low-dimensional approximation to datasets and matrices.
Last time we saw the singular value decomposition of matrices.

14.1 SVD computation

Recall this theorem from last time. Note that in Linear Algebra classes this might have
been stated as: “Every symmetric matrix can be written as U? DU, where D is a diagonal
matrix and U is a matrix with orthonormal columns.”

THEOREM 21 (SINGULAR VALUE DECOMPOSITION AND BEST RANK-k-APPROXIMATION)
An m x n real matrix has t < min {m,n} nonnegative real numbers o1,03,...,0; (called
singular values) and two sets of unit vectors U = {uy,ug,...,u;} which are in R and
V =wv1,v9,...,u, € R" (all vectors are column vectors) where U,V are orthogonormal sets
and

ul M = oyv; and  Muv; = oul . (14.1)
(When M is symmetric, each u; = v; and the o;’s are eigenvalues and can be negative.)
Furthermore, M can be represented as

M = Z ouvl . (14.2)
i

The best rank k approximation to M consists of taking the first k terms of (14.2) and
discarding the rest (where o1 > o+ > oy).

Taking the best rank k approximation is also called Principal Component Analysis or
PCA.

You probably have seen eigenvalue and eigenvector computations in your linear algebra
course, so you know how to compute the PCA for symmetric matrices. The nonsymmetric
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case reduces to the symmetric one by using the following observation. If M is the matrix
in (14.2) then

MMT = (Z aiuiviT)(Z owiul) = Zafulu; since vl v; = 1 iff i = j and 0 else.

Thus we can recover the u;’s and o;’s by computing the eigenvalues and eigenvectors of
MMT, and then recover v; by using (14.1).
Another application of singular vectors is the Pagerank algorithm for ranking webpages.

14.1.1 The power method

The eigenvalue computation you saw in your linear algebra course takes at least n? time.
Often we are only interested in the top few eigenvectors, in which case there’s a method that
can work much faster (especially when the matrix is sparse, i.e., has few nonzero entries).

As usual, we first look at the subcase of symmetric matrices. To compute the largest
eigenvector of matrix M we do the following. Pick a random unit vector x. Then repeat
the following a few times: replace x by Mx. We show this works under the following Gap
assumption: There is a gap of v between the the top two eigenvalues: |A1] — |A2| = 7.

The analysis is the same calculation as the one we used to analyse Markov chains. We
can write z as ), cye; where e;’s are the eigenvectors and \;’s are numbered in decreasing
order by absolute value. Then t iterations produces M’z = >, a;Ale;. Since z is a unit
vector, Y, a? = 1.

Since |A;| < |Ai| — for i > 2, we have

S ol [M] < nmax(M] =) =n Al (1= /M)
i>2
where apax is the largest coefficient in magnitude.

Furthermore, since x was a random unit vector (and recalling that its projection a;
on the fixed vector e; is normally distributed), the probability is at least 0.99 that ay >
1/(10n). Thus setting ¢t = O(logn|A1| /) the components for i > 2 become miniscule and
T~ o |)\1]t e1. Thus rescaling to make it a unit vector, we get e; up to some error. Then
we can project all vectors to the subspace perpendicular to e; and continue with the process
to find the remaining eigenvectors and eigenvalues.

This process works under the above gap assumption. What if the gap assumption does
not hold? Say, the first 3 eigenvalues are all close together, and separated by a gap from the
fourth. Then the above process ends up with some random vector in the subspace spanned
by the top three eigenvectors. For real-life matrices the gap assumption often holds.
Interpretation as message passing. If the matrix represents a weighted graph, then
the power method can be interpreted as a message passing algorithm. Every node gets a
random initial value with the ith node getting x;. At each step each node takes the weighted
average of its neighbors, where the weight is given by the weight on the edge connecting
them. This is nothing but computing M - x in a distributed fashion.

This distributed view of the power method has been used in many settings, including
in the original algorithms for ranking web-pages.

Also, one can use other update rules than x < Mx to obtain a host of other distributed
algorithms. Belief propagation is a famous one.
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14.2 Recovering planted bisections

Now we return to the planted bisection problem, also introduced last time. The method we
show is called the spectral method, since it uses the spectrum, i.e., eigenvalue/singular value
information. We also mentioned last time that the generalization of this model to graphs
with k parts is called Stochastic Block Model.
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Figure 14.1: Planted Bisection problem: Edge probability is p within Sy, .52 and ¢ between
51,52 where ¢ < p. On the right hand side is the adjacency matrix. If we somehow knew
51,52 and grouped the corresponding rows and columns together, and squint at the matrix
from afar, we’d see more density of edges within S7, S5 and less density between Si,.Ss.
Thus from a distance the adjacency matrix looks like a rank 2 matrix.

The observation in Figure 14.1 suggests that the adjacency matrix is close to a rank 2
matrix shown there: the block within 57,59 have value p in each entry; the blocks between
51,99 have g in each entry. This is rank 2 since it has only two distinct column vectors.

Now we sketch why the best rank-2 approximation to the adjacency matrix will more or
less recover the planted bisection. Specifically, the idea is to find the rank 2 approximation;
with very high probability its columns can be cleanly clustered into 2 clusters. This gives a
grouping of the vertices into 2 groups as well, which turns out to be the planted bisection.

Why this works has to do with the properties of rank k approximations. First we define
two norms of a matrix.

DEFINITION 6 (FROBENIUS AND SPECTRAL NORM) If M is an nxn matrixz then its Frobe-
nius norm [M|p ds /3. ij and its spectral norm M|, is the mazimum value of |Mz|,

over all unit vectors © € R". (By Courant-Fisher, the spectral norm is also the highest
eigenvalue.) For matrices that are not symmetric the definition of Frobenius norm is anal-
ogous and the spectral norm is the highest singular value.

Last time we defined the best rank k approzimation to M as the matrix M that is rank

-2
k and minimizes ‘M - M ‘F The following theorem shows that we could have defined it
equivalently using spectral norm.

LEMMA 22 3
Matrix M as defined above also satisfies that ’M - M ‘2 < |M — Bj|, for all B that have

rank k.
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THEOREM 23
If M is the best rank-k approximation to M, then for every rank k matrix C':

~ 2
‘M—C‘FgwM—cg.

Proor: Follows by Spec:cral decomposition and Courant-Fisher theorem, and the fact that
the column vectors in M and C' together span a space of dimension at most 2k. Thus

- 2
‘M -C ‘F involves a matrix of rank at most 2k. Rest of the details are cut and pasted from

Hopcroft-Kannan in Figure 14.2.
O

Returning to planted graph bisection, let M be the adjacency matrix of the graph with
planted bisection. Let C' be the rank-2 matrix that we think is a good approximation to M,
namely, the one in Figure 14.1. Let M be the true rank 2 approximation found via SVD.
In general M is not the same as C. But Theorem 23 implies that we can upper bound the
average coordinate-wise squared difference of M and C by the quantity on the right hand
side, which is the spectral norm (i.e., largest eigenvalue) of M — C.

Notice, M — C is a random matriz whose each coordinate is one of four values 1 —
p, —p, 1 — q, —q. More importantly, the expectation of each coordinate is 0 (since the entry
of M is a coin toss whose expected value is the corresponding entry of C). The study
of eigenvalues of such random matrices is a famous subfield of science with unexpected
connections to number theory (including the famous Riemann hypothesis), quantum physics
(quantum gravity, quantum chaos), etc. We show below that |M — C|3 is at most O(np).
We conclude that the average column vector in M and C (whose square norm is about np)
are apart by O(p). Thus intuitively, clustering the columns of C' into two will find us the
bipartition. Actually showing this requires more work which we will not do.

Here is a generic clustering algorithm into two clusters: Pick a random column of M
and put into one cluster all columns whose distance from it is at most 10p. Put all other
columns in the other cluster.

14.2.1 Eigenvalues of random matrices
We sketch a proof of the following classic theorem to give a taste of this beautiful area.

THEOREM 24

Let R be a random matrix such that R;;’s are independent random variables in [—1,1] of
expectation 0 and variance at most 2. Then with probability 1 — exp(—n) the largest
eigenvalue of R is at most O(o+/n).

For simplicity we prove this for o = 1.

PROOF: Recalling that the largest eigenvalue is max,.|;|,—1 ‘I'TR£U|, we hope to use some-
thing like Chernoff bound. The difficulty is that the set of unit vectors is uncountably
infinite, so we cannot use the union bound. We break the proof as follows.

Idea 1) For any fized unit vector v € R", |27 Rz| < O(y/n) with probability 1—exp(—Cn)
where C' is an arbitrarily large constant. This follows from Chernoff-type bounds. Note
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that 27 Rx = Zij Rjjz;x;. By Chernoff bounds (specifically, Hoeffding’s inequality) the
probability that this exceeds t is at most
2

W) < exp(—Q(t%)),

exp(—

since (3_;; @ 2)1/2<z z? = 1.

Idea 2) There is a set of exp(n) special directions T(1),Z(2),---, that approzimately
“cover”the set of unit vectors in K. Namely, for every unit vector v, there is at least
one r(; such that < v,z > > 0.9. This is an example of the so-called e-net method a
standard way to deal with the difficulty that the set of unit vectors is uncountably infinite.
Instead of trying to apply the union bound to all unit vectors, we apply it to just the set of
special directions, which is finite and approximates the set of all unit vectors.

First, note that < v, 2 > > 0.9 iff

lv— ’ |v|? + |z ‘ —2<wv,z > <02

In other words we are trying to cover the unit sphere with spheres of radius 0.2.

Try to pick this set greedily. Pick z(;) arbitrarily, and throw out the unit sphere of
radius 0.2 around it. Then pick z(y) arbitrarily out of the remaining sphere, and throw out
the unit sphere of radius 0.2 around it. And so on.

How many points did we end up with? By construction, each point that was picked
has distance at least 0.2 from every other point that was picked, so the spheres of radius
0.1 around the picked points are mutually disjoint. Thus the maximum number of points
we could have picked is the number of disjoint spheres of radius 0.1 in a ball of radius at
most 1.1. Denoting by B(r) denote the volume of spheres of volume r, this is at most

B(1.1)/B(0.1) = exp(n).
Idea 3) Combining Ideas 1 and 2, and the union bound, we have with high probability,
< O(y/n) for all the special directions.

‘ Ty Rx ()

Idea 4): Ifwv is the eigenvector corresponding to the largest eigenvalue satisfies then there
is some special direction satisfying ‘ma)Rx(i)‘ > 0.4vT Ru.

This is saying that the set of special directions is some kind of neighborhood watch
looking for crime (i.e., a bad event). If a bad event happens for any unit vector at all, one

of the special directions in that neighborhood will notice something almost as bad.
By the covering property, there is some special direction z(;) that is close to v. Represent

it as av 4+ Su where v L v and w is a unit vector. So a > 0.9 and < +/0.19 < 0.5. Then
= av’Rv + BuT Ru. But v is the largest eigenvalue so ‘uTRu} < vT"Rv. We

T
conclude )x%;)Rx(i)’ > (0.9 — 0.5)v” R, as claimed.

The theorem now follows from Idea 3 and 4. O
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Lemma 8.7 Suppose A is an n x d matriz and suppose C' is ann X d rank k matriz. Let
A be the best rank k approzimation to A found by SVD. Then, ||A—C||% < 5k||A —C||2.

Proof: Let u;,up,...,uy be the top k singular vectors of A. Extend the set of the top
k singular vectors to an orthonormal basis uy, u, ..., u, of the vector space spanned by
the rows of A and C. Note that p < 2k since A is spanned by uy,us,...,ux and C is of
rank at most k. Then,

k

1A= CIE =D I(A—Cpui* + Y |(A—Couf*

i=1 i=k+1

Since {u;| 1 < i < k} are the top k singular vectors of A and since A is the rank k ap-
proximation to A, for 1 < i < k, Au; = Au; and thus |(ﬁ — C’) ui|3 =[(A-C) ui|2. For
i >k, Aw; = 0, thus [(A—C) ui|2 — |Cu;)°. From this it follows that
= 9 k 2
lA-cl2 = 3 IA-Chul + 3 (Cuif
i=1 i=k+1
p
<KEJA-Cl3+ ) |Au + (C— A)wf?

t=k+1

Using |a + b|? < 2|al? + 2|b|?

P P
J[A—C|E<HIA-Cl3+2 Y [Au?+2 Y [(C— Ay’
i=k+1 i=k+1
<klA-ClE+2(—k-1Doi,(A)+2(-k-1)||A-Cl3
Using p< 2k impliess k>p—k—1
. 9 3 ; 2
||A — C||F < k||A—C||3 + 2kaz,,(A) + 2k||A — C|3. (8.1)

As we saw in Chapter 4, for any rank k matrix B, ||A— B||z > ox41(A4) and so ox1(A4) <
||A — C||; and plugging this in, we get the Lemma. ]

Figure 14.2: Proof of Theorem 23 from Hopcroft-Kannan book
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