
Chapter 10

Applications of multiplicative
weight updates: LP solving,
Portfolio Management

Today we see how to use the multiplicative weight update method to solve other problems.
In many settings there is a natural way to make local improvements that “make sense.”The
multiplicative weight updates analysis from last time (via a simple potential function) allows
us to understand and analyse the net e↵ect of such sensible improvements. (Formally, what
we are doing in many settings is analysing an algorithm called gradient descent which we’ll
encounter more formally later in the course.)

Along the way we’ll encounter duality, a notion that is frequently taught in undergrad
algorithms courses but in a more confusing way.

10.1 Solving systems of linear inequalities

We encountered systems of linear inequalities in Lecture 6. Today we study a version that
seems slightly more restricted but is nevertheless as powerful as general linear programming.
(Exercise!)

system 1

a
1

· x � b
1

a
2

· x � b
2

...

am · x � bm

xi � 0 8i = 1, 2, . . . , n
X

i

xi = 1.

54

55

The set of feasible solutions is a convex set, by which we mean that if x, x0 are two
solutions, then so is 1

2

(x + x0) —this is verified by noting that if a · x � b and a · x0 � b then
a · 1

2

(x + x0) � b.
In your high school you learnt the “graphical”method to solve linear inequalities, and

as we discussed in Lecture 6, those can take mn/2 time. Here we design an algorithm that,
given an error parameter " > 0, runs in O(mL/") time and either tells us that the original
system is infeasible, or gives us a solution x satisfying the last two lines of the above system,
and

aj · x � bj � " 8j = 1, . . . , m.

(Note that this allows the possibility that the system is infeasible per se and nevertheless
the algorithm returns such an approximate solution. In that case we have to be happy with
the approximate solution.) Here L is an instance-specific parameter that will be clarified
below; roughly speaking it is the maximum absolute value of any coe�cient. (Recall that
the dependence would need to be poly(log L) to be considered polynomial time. We will
study such a method later on in the course.)

What is a way to certify to somebody that the system is infeasible? The following is
su�cient: Come up with a system of nonnegative weights w

1

, w
2

, . . . , wm, one per inequality,
such that the following linear program has a negative value:

system 2

max
X

j

wj(aj · x� bj)

xi � 0 8i = 1, 2, . . . , n
X

i

xi = 1.

(Note: the wj ’s are fixed constants in system 2.) If this system has a negative value, this
means that every solution x to the constraints in system 2 makes the objective negative,
which in turn means that this x fails to satisfy one of the inequalities in system 1.

This linear program has only two nontrivial constraints (not counting the constraints
xi � 0) so it is trivial to find a solution quickly using the old high school method. In fact,
the solution has the form: xi = 1 for some i and xj = 0 for all j 6= i. We can try all n such
solutions and take the best.

Example 14 The system of inequalities x
1

+ 2x
2

� 1, x
1

� 5x
2

� 5 is infeasible when
combined with the constraints x

1

+ x
2

= 1, x
1

� 0, x
2

� 0 since we can multiply the first
inequality by 5 and the second by 2 and add to obtain 7x

1

� 15. Note that 7x
1

�11 cannot
take a positive value when x

1

 1.

This method of certifying infeasibility is eminently sensible and the weighting of in-
equalities is highly reminiscent of the weighting of experts in the last lecture. So we can try
to leverage it into a precise algorithm. It will have the following guarantee: (a) Either it

finds a set of nonnegative weights certifying infeasibility or (b) It finds a solution x
(f)

that

approximately satisfies the system, in that aj · x(f) � bj � �". Note that conditions (a) and

56

(b) are not disjoint; if a system satisfies both conditions, the algorithm can do either (a) or
(b).

We use the meta theorem on Multiplicative weights from the last lecture, where experts
have positive or negative costs (where negative costs can be seen as payo↵s) and the algo-
rithm seeks to minimize costs by adaptively decreasing the weights of experts with larger
cost. The meta theorem says that the algorithm’s cost over many steps tracks closely tracks
the cost incurred by the best player, plus an additive term O(log n/").

We identify m “experts,”one per inequality. We maintain a weighting of experts, with
w
1

(t), w
2

(t), . . . , wm
(t) denoting the weights at step t. (At t = 0 all weights are 1.) Solve

system 2 using these weights. If it turns out to have a negative value, we have proved the
infeasibility of system 1 and can HALT right away. Otherwise take any solution, say x(t),
and think of it as imposing a “cost ”of mj

(t) = ai ·x(t)�bi on the jth expert. (In particular,
the first line of system 2 is merely —up to scaling by the sum of weights— the expected
cost for our MW algorithm, and it is positive.) Thus the MW update rule will update the
experts’ weights as:

wj
(t+1) wj

(t)(1� ⌘ mj
(t)).

(Note that we are no longer thinking of the MW algorithm as picking a single expert;
instead it maintains a weighting on experts.) We continue thus for some number T of steps
and if we never found a certificate of the infeasibility of system 1 we output the solution
x(f) = 1

T (x(1) + x(2) + · + x(T)), which is the average of all the solution vectors found at
various steps. Now let L denote the maximum possible absolute value of any ai · x � bi
subject to the final two lines of system 2.

Claim: If T > L2 log n/"2 then x(f) satisfies aj · x(f) � bj � �" for all j.
The proof involves the MW meta theorem which requires us to rescale (multiplying by

1/L) so all costs lie in [�1, 1] and setting " =
p

log n/T .
Then the total cost incurred by the MW algorithm is at most

total cost of expert j + ⌘
X

t

|mj
(t)| +

ln n

⌘
.

Setting ⌘ =
p

ln n/T makes this at most

total cost of expert j + O(
p

T ln n).

Thus the per-step additive error is O(
p

ln n/T), which we wish to make less than "/L. This
is true for T > L2 log n/"2.

Then we can reason as follows: (a) The expected per-step cost of the MW algorithm
was positive (in fact it was positive in each step). (b) The quantity aj · x(f) � bj is simply
the average cost for expert j per step. (c) The total number of steps is large enough that
our MW theorem says that (a) cannot be " more than (b), so (b) was at least �".

Here is another intuitive explanation that suggests why this algorithm makes sense
independent of the experts idea. Vectors x(1), x(2), . . . , x(T) represent simplistic attempts
to find a solution to system 1. If ai · x(t) � bi is positive (resp., negative) this means
that the jth constraint was satisfied (resp., unsatisfied) and thus designating it as a cost
(resp., reward) ensures that the constraint is given less (resp., more) weight in the next

57

round. Thus the multiplicative update rule is a reasonable way to search for a weighting of
constraints that gives us the best shot at proving infeasibility.
Remarks: See the AHK survey on multiplicative weights for the history of this algorithm,
which is actually a quantitative version of an older algorithm called Lagrangian relaxation.

10.1.1 Duality Theorem

The duality theorem for linear programming is often stated in a convoluted way in textbooks.
All it says is that our method of showing infeasibility of system 1 —namely, show for some
weighting that system 2 has negative value–is not just su�cient but also necessary. (The
usual statements all follow from this.)

This follows by imagining letting " go to 0. If the system is infeasible, then there is
some "

0

(depending upon the number of constraints and the coe�cient values) such that
there is no "-close solution with the claimed properties of x(f) for " < "

0

. Hence at one of
the steps we must have failed to find a positive solution for system 2. (Mathematically,
we are using a property called compactness: if there exists a solution x to the LP for every
" > 0 then there must be one for " = 0.)

We’ll further discuss LP duality in a later lecture.

10.2 Portfolio Management

Now we return to a a more realistic version of the stock-picking problem that motivated
our MW algorithm. (You will study this further in a future homework.) There is a set of n
stocks (e.g., the 500 stocks in S& P 500) and you wish to manage an investment portfolio
using them. You wish to do at least as well as the best stock in hindsight, and also better
than index funds, which keep a fixed proportion of wealth in each stock. Let ci(t) be the
price of stock i at the end of day t.

If you have Pi
(t) fraction of your wealth invested in stock i then on the tth day your

portfolio will rise in value by a multiplicative factor
P

i Pi
(t)ci(t)/ci(t�1). Looks familiar?

Let ri(t) be shorthand for ci(t)/ci(t�1).
If you invested all your money in stock i on day 0 then the rise in wealth at the end is

ci(T)

ci(0)
=

T�1

Y

t=0

ri
(t).

Since log ab = log a + log b this gives us the idea to set up the MW algorithm as follows.
We run it by looking at n imagined experts, each corresponding to one of the stocks. The
payo↵ for expert i on day t is log ri(t). (In other words, the cost is � log ri(t).) Then as
noted above, the total payo↵ for expert i over all days is

P

t log ri(t) = log(ci(T)/ci(0)). This
is simply the log of the multiplicative factor by which our wealth would increase in T days if
we had just invested all of it in stock i on the first day. (This is the jackpot we are shooting
for: imagine the money we could have made if we’d put all our savings in Google stock on
the day of its IPO.)

Our algorithm plays the canonical MW strategy from last lecture with a suitably small ⌘
and with the probability distribution P (t) on experts at time t being interpreted as follows:

58

Pi
(t) is the fraction of wealth invested in stock i at the start of day t. Thus we are no longer

thinking of picking one expert to follow at each time step; the distribution on experts is the
way of splitting our money into the n stocks. In particular on day t our portfolio increases
in value by a factor

P

i Pi
(t) · r(t).

Note that we are playing the MW strategy that involves maximising payo↵s, not mini-
mizing costs. (That is, increase the weight of experts if they get positive payo↵; and reduce
weight in case of negative payo↵.) The MW theorem says that the total payo↵ of the MW
strategy, namely,
P

t

P

i Pi
(t) · log ri(t), is at least (1 � ") times the payo↵ of the best expert provided T is

large enough.
It only remains to make sense of the total payo↵ for the MW strategy, namely,

P

t

P

i Pi
(t)·

log ri(t), since thus far it is just an abstract quantity in a mental game that doesn’t make
sense per se in terms of actual money made.

Since the logarithm is a concave function (i.e., 1

2

(log x + log y)  log x+y
2

; a consequence

of the arithmetic mean-geometric mean inequality) and
P

i Pi
(t) = 1, simple calculus shows

that
X

i

Pi
(t) · log r(t)  log(

X

i

Pi
(t) · r(t)).

The right hand side is exactly the logarithm of the rise in value of the portfolio of the MW
strategy on day t. Thus we conclude that the total payo↵ over all days lower bounds the
sum of the logarithms of these rises, which of course is the log of the ratio (final value
of the portfolio)/(initial value). We conclude that the log of the ratio (final value of the
portfolio)/(initial value) tracks the log of the rise in value of the best stock (in hindsight).

All of this requires that the number of steps T should be large enough. Specifically, if
�

�log ri(t)
�

�  1 (i.e., no stock changes value by more than a factor 2 on a single day) then

the total di↵erence between the desired payo↵ and the actual payo↵ is
p

log n/T times
maxi

P

t

�

�log ri(t)
�

�, as noted in Lecture 8. This performance can be improved by other
variations of the method (see the paper by Hazan and Kale). In practice this method
doesn’t work very well; we’ll later explore a better algorithm.

Remark: One limitation of this strategy is that we have ignored trading costs (ie
dealer’s commisions). As you can imagine, researchers have also incorporated trading costs
in this framework (see Blum and Kalai). Perhaps the bigger limitation of the MW strat-
egy is that it assumes nothing about price movements whereas there is a lot known about
the (random-like) behavior of the stock market. Traditional portfolio management theory
assumes such stochastic models, and is more akin to the decision theory we studied two
lectures ago. But stochastic models of the stock market fail sometimes (even catastrophi-
cally) and so ideally one wants to combine the stochastic models with the more pessimistic
viewpoint taken in the MW method. See the paper by Hazan and Kale. See also a recent
interesting paper by Abernathy et al. that suggests that the standard stochastic model
arises from optimal actions of market players.

Thomas Cover was the originator of the notion of managing a portfolio against an
adversarial market. His strategy is called universal portfolio.

bibliography

59

1. A. Blum and A. Kalai. E�cient Algorithms for Universal Portfolios. J. Machine
Learning Research, 2002.

2. Thomas Cover. Universal Portfolios. Mathematical Finance 1 (1): 129, 1991.

3. E. Hazan and S. Kale. On Stochastic and Worst-case Models for Investing. Proc.
NIPS 2009.

4. J. Abernethy, R. Frongillo, A. Wibisono. Minimax Option Pricing Meets Black-
Scholes in the Limit. Proc. ACM STOC 2012.

