
SUNDR:
Secure	Untrusted	Data	Repository

Jinyuan Li,	Maxwell	 Krohn,	David	Mazieres,	Dennis	Shasha
NYU	Department	of	Computer	Science

Presented	by:	Hussein	Nagree
December	7th,	2015



Motivation

• Data	needs	to	protected	on	storage	servers.
• Traditionally	done	by	restricting	external	access	to	users	and	
software.
• Can	be	thought	of	as	building	a	fence	around	the	servers;	however,

• Fences	are	often	not	high	enough
• People	inside	the	fence	may	not	be	completely	trustworthy
• Fences	impede	useful	traffic	to	the	servers



Overview

• Reduce	the	need	to	trust	storage	servers.
• File	system	contents	are	cryptographically	protected,	and	can	be	
verified	by	any	other	user.
• Fork	consistency	is	guaranteed.

• Strongest	consistency	guarantee	possible	without	any	trusted	parties.
• Can	be	extended	to	fetch-modify	consistency	by	maintaining	a	trusted	
consistency	server,	or	by	communication	between	users.

• Properties	are	maintained	even	in	the	face	of	a	complete	server	
takeover.



Fork	Consistency
• Correct	view	of	action	history:	

• Forked	view	of	action	history:	



Basic	Architecture

• One	SUNDR	server	can	support	multiple	file	systems.
• Each	file	system	has	one	super-user,	who	can	set	user	and	group	
privileges.
• Thus,	a	file	system	administrator	is	different	from	the	server	
administrator.
• There	are	also	multiple	users	that	communicate	using	a	SUNDR	client.
• Users	have	the	ability	to	switch	between	clients.



Basic	Architecture



Straw	Man	System	Protocol

• Stores	a	complete	ordered	list	of	all	operations	in	history.
• Each	operation	has	a	signature	that	covers	all	preceding	events.
• Clients	acquire	a	global	lock,	download	the	file	system	history,	and	
validate	each	user’s	previous	signature	(including	their	own).
• Clients	then	construct	a	local	copy	of	the	file	system,	add	their	own	
operation,	and	sign	and	send	that	to	the	server.



Serialized	and	Concurrent	SUNDR

• The	previous	version	of	SUNDR	is	impractical.
• I-handles	are	used	to	avoid	having	to	recreate	the	entire	file	system.
• Clients	download	a	Version	Structure	List	(VSL)	and	make	changes	to	
the	version	structures	that	hold	the	relevant	i-handles.	
• Update	certificates	allow	parallelization	without	having	to	wait	for	VSL	
updates;	these	are	reflected	in	the	Pending	Version	List	(PVL).



File	System	Implementation

• The	server	consists	of	a	consistency	server	and	a	block	store.
• Built	upon	an	xfs device	driver.
• Uses	E-sign	instead	of	RSA	for	performance	improvement.
• Consistency	server	stores	changes	made	to	the	VSL	and	PVL	to	block	
storage	(or	NVRAM	if	available)	before	responding	to	client	RPCs.
• A	block	store	daemon	bstor handles	all	disk	storage.	



Bstor Disk	Storage

• Interacts	directly	with	clients	as	well	as	the	consistency	server.	
• Writes	all	data	to	disk,	to	allow	for	crash	recovery.
• Heavily	optimized	to	support	writes	to	disk.
• Uses	a	temporary	log	to	store	incoming	writes

• Sector	aligns	data	blocks	to	improve	synchronous	write	latency.
• Improves	throughput	even	under	heavy	load	using	batch	writes.



Performance	Evaluation



Strengths/Limitations

Strengths
• Provides	integrity	during	system	recovery,	even	from	untrusted	clients.
• Enables	hassle-free	outsourcing	of	storage	management.
• Performance	is	at	par	with	similar	NFS	systems.

Weaknesses
• Can	only	detect	attacks,	but	does	not	resolve	them.
• Does	not	offer	read	protection	or	confidentiality.
• Leaves	room	for	optimization	and	compression.
• Cannot	protect	against	file	changes	made	by	a	malicious	user.



Discussion

Thoughts	or	questions?


