SPORC

Group Collaboration using
Untrusted Cloud Resources

Paper by Ariel Feldman, William Zeller, Michael
Freedman, and Edward Felten

OSDI '10

Presentation by Riley Simmons-Edler

What is SPORC?

» A system for running collaborative cloud apps on
Untrusted servers

« Works with any application where operation
records can be mirrored locally as well as
on a server

 Prevents server admin snooping, BEHOLD
malicious interference :

Why do we care?

* Google Docs is popular

» People like to write things that can get them in trouble

« Growing use of web/cloud services to organize by
protest movements and other groups

« Anonymization of cloud file hosting

Goals

* Flexible

* Fast

* Asynchronous

* Protect data from server
* Detect malicious servers

e Recover from malicious servers

Model

* Operational Transformations
* Fork* Consistency
* Server functions as a centralized access point/message passer

* Hash chain of ops to guarantee consistent operation basis, avoid meddling

Operational Transformation(OT)

Take two operations and transform one of them relative to the other

Then apply the non-transformed and transformed operation in order

(del z —1,del y) if z>y
T(del z,del y) =< (del z,del y—1) if z<y

(no-op,no-op) if ==y

Doesn't need to be the optimal merge, just needs to be consistent/automatic

Fork*

Guarantees that the server can not add/alter data

Only permissible server interference is forking clients
Into multiple operation histories

Hash chain of operations used to enforce Fork*

Hash stores all ops seen by a client,
plus operation # for last op.

If histories diverge up to that op #,
server interfered or failed.

Fork Checking/Resolution

» Forks are detected out-of-band(e.g. via socket connection)
» Clients compare op#-hash chain pairs, difference indicates fork

» Detected forks are resolved via OT
* Replay changes since fork on trusted server,
OT merges them automatically

Execution Sequence

Client
Application

Committed
History

Library

From Srv

op

username

cintiD

cintSeqNo

prevSeqgNo

prevHC

payload;

signature

seqgNo
-/ 2

Server

]

Exgserimental IVaIidation

Server crypto

Server processing
Client processing
Client transformation
Client queueing
Client crypto

Server crypto

Server processing
Client processing
Client transformation
Client gueueing
Client crypto

Mean latency (ms)
Mean latency (ms)

8 8
Number of clients Number of clients

(a) Unloaded key-value store (a) Loaded key-value store

Server crypto

Server processing
Client processing
Client transformation
Client queueing
Client crypto

Server crypto

Server processing
Client processing
Client transformation
Client queueing
Client crypto

Mean latency (ms)
Mean latency (ms)

8 8
Number of clients Number of clients

(b) Unloaded text editor (b) Loaded text editor

Operations per second

Throughput and Fork Merge Time

1mo———————— 2 ~ 20 . e | . —
1600 fus, . , . < 1g | o+ Text Editor (w/ pending) |
1500 | j ..,‘:,. T ';*‘*-.,. 1 20 @ g 16 - Key—Value (W/ pending) |

i . E = 14 |~ TextEditor e
1400 . 152 -g T = Key-Value o |
1300 s Tl e '

L X | (=9 = e 1
1200 108 & 8¢t :
1100 . 2 E 6t 1
1000 | 15 £ = 4}]

_ ——MBs |5 F E 3 _
0 ~ e ops/s = 2
800 ' — 0 S _ S . R

0 2 4 6 8§ 10 12 14 16 0 2000 4000 6000 8000 10000

Payload size (KB) Number of committed operations

Figure 4: Server throughput as a function of payload size. Figure 5: Client time-to-join given a variable length history

Strengths

« Highly resistant to malicious server attacks

« Minimal reduction in user experience relative
to unprotected cloud services

« Able to recover automatically in the event
of malicious server activity

n

Fear the
Spork

™

Weaknesses

Side-channel/OOB attacks are still a thing
« SPORC makes a lot of assumptions
about peripheral security

-

Malicious server still knows client IP's UTENSIL BF

Traffic analysis and client monitoring could THE 50DS
allow contents to be inferred.

Many details(e.g. fork merging/detection)
not implemented

Conclusions

« SPORC hides activity from the server effectively

GREATEST INVENTION
EVER?

* Low overhead on top of normal cloud app operations

« General security of SPORC is dependent on external
functionality, good user behavior.

« Hard to make better without restricting user behavior
or removing server entirely(e.g. peer-to-peer system)

KFC
SPORK

Bottom Line: Probably a good everyday solution
for those who don't want to get snooped by Google/NSA

	Slide 1
	What is SPORC?
	Why do we care?
	Goals
	Model
	Operational Transformation
	Fork*
	Slide 8
	Execution Sequence
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

