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What is SPORC?

» A system for running collaborative cloud apps on
Untrusted servers

« Works with any application where operation
records can be mirrored locally as well as
on a server

 Prevents server admin snooping, BEHOLD
malicious interference :




Why do we care?

* Google Docs is popular

» People like to write things that can get them in trouble

« Growing use of web/cloud services to organize by
protest movements and other groups

« Anonymization of cloud file hosting



Goals

* Flexible

* Fast

* Asynchronous

* Protect data from server
* Detect malicious servers

e Recover from malicious servers



Model

* Operational Transformations
* Fork* Consistency
* Server functions as a centralized access point/message passer

* Hash chain of ops to guarantee consistent operation basis, avoid meddling



Operational Transformation(OT)

Take two operations and transform one of them relative to the other

Then apply the non-transformed and transformed operation in order

(del z —1,del y) if z>y
T(del z,del y) =< (del z,del y—1) if z<y

(no-op,no-op) if ==y

Doesn't need to be the optimal merge, just needs to be consistent/automatic



Fork*

Guarantees that the server can not add/alter data

Only permissible server interference is forking clients
Into multiple operation histories

Hash chain of operations used to enforce Fork*

Hash stores all ops seen by a client,
plus operation # for last op.

If histories diverge up to that op #,
server interfered or failed.




Fork Checking/Resolution

» Forks are detected out-of-band(e.g. via socket connection)
» Clients compare op#-hash chain pairs, difference indicates fork

» Detected forks are resolved via OT
* Replay changes since fork on trusted server,
OT merges them automatically



Execution Sequence

Client
Application

Committed
History

Library

_____________________

____________________

From Srv

op

username

cintiD

cintSeqNo

prevSeqgNo

prevHC

payload;

signature

seqgNo
-/ 2

Server

]




Exgserimental IVaIidation
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Operations per second

Throughput and Fork Merge Time
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Figure 4: Server throughput as a function of payload size. Figure 5: Client time-to-join given a variable length history



Strengths

« Highly resistant to malicious server attacks

« Minimal reduction in user experience relative
to unprotected cloud services

« Able to recover automatically in the event
of malicious server activity

n

Fear the
Spork

™




Weaknesses

Side-channel/OOB attacks are still a thing
« SPORC makes a lot of assumptions
about peripheral security

-

Malicious server still knows client IP's UTENSIL BF

Traffic analysis and client monitoring could THE 50DS
allow contents to be inferred.

Many details(e.g. fork merging/detection)
not implemented




Conclusions

« SPORC hides activity from the server effectively

GREATEST INVENTION
EVER?

* Low overhead on top of normal cloud app operations

« General security of SPORC is dependent on external
functionality, good user behavior.

« Hard to make better without restricting user behavior
or removing server entirely(e.g. peer-to-peer system)

KFC
SPORK

Bottom Line: Probably a good everyday solution
for those who don't want to get snooped by Google/NSA
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