Spanner: Google’s Globally-
Distributed Database

Google, Inc.
OSDI 2012

Problem Statement

» Distributed data system with high
avallability

» Support external consistency!

Key Ideas

» Distributed data system with high
avallability

» Supports external consistency!
« Enabling technology: TrueTime AP|

Server Organization

universemaster

placement driver

Zone 1

zonemaster

Zone 2

zonemaster

Zone N

location
proxy

zonemaster

location
proxy

spanserver

location
Proxy

spanserver

spanserver

datacenters have one or more zones

Server Organization

assigns data to spanservers

used by clientsto - ———7

locate spanservers

serves data to clients

I

handles moving data across zones

universemaster

placement driver

Zone 1

>

zonemaster

Zone 2

I

zonemaster

location
proxy

1

location
proxy

spanserver

spanserver

Zone N

zonemaster

location
proxy

spanserver

Spanserver Stack

replica
r Paxos
between 100 and tablet (key:string, timestamp:int64) - string
1000 instances

|
! Colossus

Spanserver Stack

set of replicas: Paxos group

writes initiate Paxos protocol at leader;
reads from any sufficiently up-to-date replica

leader
replica replica replica
Paxos 4=r Paxos .= Paxos
tablet tablet tablet
Colossus i E Colossus i E Colossus i

Data Center X Data Center Y Data Center Z

Spanserver Stack

other group's
participant &———
leader

supports distributed .
transactions

contains statefor 5

two-phase locking

replica

Paxos —

tablet

Data Center X

participant other group’s
=== participant
leader leader
" transaction f
- manager -
lock table
leader
replica replica
Paxos '@ e———' Paxos
tablet tablet
I I I
! Colossus : Colossus |

Data Center Y

Data Center Z

transactions with 1+ group: two-phase commit
select coordinator leader from participant leaders

other group's
participant &———
leader

supports distributed .
transactions

contains statefor 5

two-phase locking

replica

Paxos —

tablet

Data Center X

participant other group’s
=== participant
leader leader
" transaction f
- manager -
lock table
leader
replica replica
Paxos '@ e———' Paxos
tablet tablet
I I I
| Colossus : Colossus |

Data Center Y

Data Center Z

TrueTime API

Exposes clock uncertainty by expressing
time as an interval

Uses GPS and atomic clocks
[ime master machines per datacenter

Client polls multiple masters to compute
time interval

time

TrueTime API

TT.now()

earliest latest

<€ >
2¢

Consistency

* Ensure external consistency by ensuring
timestamp order

* All transactions are assigned timestamp
« Data written by /s timestamped with s

Read-Write Transactions

* Two-phase locking: assign timestamps at
any time that locks are held

* Assign timestamps to Paxos writes in
iIncreasing order across leaders

— A leader only assigns timestamps within its
leader lease; leader leases are disjoint

Read-Write Transactions

Transactions: two-phase commit
Two transactions

start commit

T, >

start commit

T, >
Assign commit timestamps with s4 < S,
How?

Read-Write Transactions

Start: commit timestamp is affertime of
commit request at server

e Or: t . (e,%Ve) <8

Read-Write Transactions

Commit walit: cannot see data committed by
T until s (assigned timestamp) has passed

>

pick S
s = TT.now().latest

Read-Write Transactions

Commit walit: cannot see data committed by
T until s (assigned timestamp) has passed

>

pick S wait until
s = TT.now().latest s < TT.now().earliest

Read-Write Transactions

Commit walit: cannot see data committed by
T until s (assigned timestamp) has passed

>

pick S wait until
s = TT.now().latest s < TT.now().earliest

commit wait

Read-Write Transactions

Commit walit: cannot see data committed by
T until s (assigned timestamp) has passed

pick S wait until
s = TT.now().latest s < TT.now().earliest

commit wait

Read-Write Transactions

81 < tabs(e1commit)
tabs(e1commit) < tabs(e28tart)
tabS(GZStart) < tabs(ezserver)

tabs(ezserver) < 82

S < S,

Read-Write Transactions

Two-phase commit

coordinator

leader

participant

participant

Read-Write Transactions

Two-phase commit: client begins

coordinator

leader

participant

participant

Read-Write Transactions

Two-phase commit

coordinator

leader

participant

participant

Read-Write Transactions

Two-phase commit

coordinator

leader

participant

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit

log prepare
record in Paxos

coordinator

leader

participant

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit

log prepare
record in Paxos

coordinator -

7

participant
send prepare
timestamp

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit

log prepare
record in Paxos

coordinator -

7

participant
send prepare
timestamp

participant

choose commit
timestamp

choose prepare
timestamp

Read-Write Transactions

Two-phase commit

log prepare log commit
record in Paxos in Paxos

coordinator -

7

participant
send prepare
timestamp

participant

choose commit
timestamp

choose prepare
timestamp

Read-Write Transactions

Two-phase commit

log prepare log commit
record in Paxos in Paxos

coordinator _

7

participant

send prepare
timestamp

participant

choose commit
timestamp

choose prepare commit wait
timestamp done

Read-Write Transactions

Two-phase commit

log prepare log commit
record in Paxos in Paxos

coordinator _

[l 11\

participant
notify
send prepare
timestamp

participant

choose commit
timestamp

choose prepare commit wait
timestamp done

Read-Write Transactions

Two-phase commit

log prepare log commit
record in Paxos in Paxos

coordinator _

[l 11\

participant
notify
send prepare
timestamp

participant

choose commit
timestamp

choose prepare commit wait
timestamp done

Read-Write Transactions

Two-phase commit

log prepare log commit log outcome
record in Paxos in Paxos in Paxos

coordinator . _
leader
participant =

notify

send prepare
timestamp

participant

choose commit
timestamp

choose prepare commit wait
timestamp done

Read-Write Transactions

Two-phase commit

log prepare log commit log outcome
record in Paxos in Paxos in Paxos

coordinator . _
leader
participant =

notify

send prepare
timestamp

participant

choose commit
timestamp

choose prepare commit wait
timestamp done

Read-Only Transactions

» Serving reads at a timestamp
— Replica tracks safe time t . canread t <t
— Define t , = min(thaxes, tT)

» Assigning timestamps to RO transactions
— Simplest: assign s,.,q = TT.now().latest

— May block; should assign oldest timestamp
that preserves external consistency

safe

Microbenchmarks

latency (ms)

participants mean 99th percentile

I 17.0 £1.4 75.0 +£34.9

2 24.5 £2.5 87.6 £35.9

5 31.5 £6.2 104.5 £52.2

10 30.0 £3.7 95.6 £25.4

25 35.5 5.6 100.4 +£42.7

50 42.7 +4.1 93.7 +£22.9

100 71.4 +£7.6 131.2 £17.6
200 150.5 =11.0 320.3 £35.1

Two-phase commit scalability

Microbenchmarks

T 14M -

2 oM ---0-- non—leaF]er

= 1 leader-soft .

S Mo c-ee- leader-hard 5%

L 1 .

= 800K - oG

E] e o '

o 600K - 0 .o

= — 0 o°

= 400K - 0@ o

= - RS

= 200K - 0®

-~ {0

"-" % 1 1 1 1 I L] ¥ ¥ 1 I 1 1 1 1 l 1 1 1) I
0 5 10 15 20

Time in seconds

Effect of killing servers on throughput

Performance

e Truelime

Epsilon (ms)

F1, Google’s advertising backend
— Automatic failover ©

— High standard deviation for latency?

Final Thoughts

Implemented at a large scale (F1)!
Commit wait is pretty clever

Very dependent on clocks
Security?

References

» Corbett et al. “Spanner: Google’s
Globally-Distributed Database.” Proc. Of
OSD/. 2012.

« http://research.google.com/archive/spanner.html

