
Spanner: Google’s Globally-

Distributed Database

Google, Inc.

OSDI 2012

Presented by: Karen Ouyang

Problem Statement

• Distributed data system with high
availability

• Support external consistency!

Key Ideas

• Distributed data system with high
availability

• Supports external consistency!

• Enabling technology: TrueTime API

Server Organization

datacenters have one or more zones

Server Organization

used by clients to
locate spanservers

serves data to clients

handles moving data across zones

assigns data to spanservers

Spanserver Stack

between 100 and
1000 instances

(key:string, timestamp:int64) → string

Spanserver Stack

set of replicas: Paxos group

writes initiate Paxos protocol at leader;
reads from any sufficiently up-to-date replica

supports distributed
transactions

Spanserver Stack

contains state for
two-phase locking

supports distributed
transactions

contains state for
two-phase locking

transactions with 1+ group: two-phase commit
select coordinator leader from participant leaders

TrueTime API

• Exposes clock uncertainty by expressing
time as an interval

• Uses GPS and atomic clocks

• Time master machines per datacenter

• Client polls multiple masters to compute
time interval

TrueTime API

time

earliest latest

TT.now()

2ϵ

Consistency

• Ensure external consistency by ensuring
timestamp order

• All transactions are assigned timestamp

• Data written by T is timestamped with s

Read-Write Transactions

• Two-phase locking: assign timestamps at
any time that locks are held

• Assign timestamps to Paxos writes in
increasing order across leaders

– A leader only assigns timestamps within its
leader lease; leader leases are disjoint

Read-Write Transactions

• Transactions: two-phase commit

• Two transactions

• Assign commit timestamps with s1 < s2

• How?

T1

T2

start

start

commit

commit

Read-Write Transactions

Start: commit timestamp is after time of
commit request at server

• or: tabs(e2
server) ≤ s

Read-Write Transactions

Commit wait: cannot see data committed by
T until s (assigned timestamp) has passed

pick
s = TT.now().latest

s

Read-Write Transactions

Commit wait: cannot see data committed by
T until s (assigned timestamp) has passed

pick
s = TT.now().latest

wait until
s < TT.now().earliest

s

Read-Write Transactions

Commit wait: cannot see data committed by
T until s (assigned timestamp) has passed

pick
s = TT.now().latest

wait until
s < TT.now().earliest

s

commit wait

Read-Write Transactions

Commit wait: cannot see data committed by
T until s (assigned timestamp) has passed

pick
s = TT.now().latest

wait until
s < TT.now().earliest

s

commit wait

Read-Write Transactions

s1 < tabs(e1
commit)

s1 < tabs(e1
commit) < tabs(e2

start)

s1 < tabs(e1
commit) < tabs(e2

start) < tabs(e2
server)

s1 < tabs(e1
commit) < tabs(e2

start) < tabs(e2
server) ≤ s2

s1 < s2

Read-Write Transactions

Two-phase commit

coordinator
leader

participant

participant

Read-Write Transactions

Two-phase commit: client begins

coordinator
leader

participant

participant

Read-Write Transactions

Two-phase commit

coordinator
leader

participant

participant

Read-Write Transactions

Two-phase commit

coordinator
leader

participant

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

coordinator
leader

participant

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

commit wait
done

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

notify

commit wait
done

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

notify

commit wait
done

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

notify

commit wait
done

log outcome
in Paxos

Read-Write Transactions

Two-phase commit
log prepare

record in Paxos

send prepare
timestamp

coordinator
leader

participant

participant

choose prepare
timestamp

choose commit
timestamp

log commit
in Paxos

notify

commit wait
done

log outcome
in Paxos

Read-Only Transactions

• Serving reads at a timestamp

– Replica tracks safe time tsafe: can read t ≤ tsafe

– Define tsafe = min(tPaxos, tTM)

• Assigning timestamps to RO transactions

– Simplest: assign sread = TT.now().latest

– May block; should assign oldest timestamp
that preserves external consistency

Microbenchmarks

Two-phase commit scalability

Microbenchmarks

Effect of killing servers on throughput

Performance

• TrueTime

• F1, Google’s advertising backend

– Automatic failover

– High standard deviation for latency?

Final Thoughts

• Implemented at a large scale (F1)!

• Commit wait is pretty clever

• Very dependent on clocks

• Security?

References

• Corbett et al. “Spanner: Google’s
Globally-Distributed Database.” Proc. Of
OSDI. 2012.

• http://research.google.com/archive/spanner.html

