Separating key management
from file system security

David Mazieres, Michael Kaminsky, M.
Frans Kaashoek and Emmet Witchel.
MIT LCS

SOSP 1999

The problem.

Problem:

— Current file systems lack key management that scales
globally (say, for the internet) and is decentralized.

— Attackers can easily tamper with network traffic,
current file systems are insecure.

— NFS’ security is very weak and does not scale well.

— Most large scale systems need third party (like
Verisign) to authenticate.

— They claim SSL is too complicated for web servers to
implement.

Motivational Example

Solution: Self-certifying pathnames!

Create a self-certifying file system (SFS) that has the
following properties:
Security:

— Attackers cannot read or modify the file system, but can
intercept, modify or inject new packets.

— Assume attackers are computationally bounded and it is
assumed that factoring is hard.

Versatility:
— Support a wide variety of authentication methods.

Global file system:

— It doesn't matter which client a person uses. What must
matter is the user.

Design
The key idea: self-certifying pathnames!

SFS servers are accessible under a pathname
of form sfs/Location:HostID.

HostID is crypto hash of Server’s Public Key
and Location.

Secure collision-resistent crypto hash: SHA-1.
Path on remote server appended to the end.

Location HostID (specifies public key) path on remote server

/sfs/ sfs.1csmit.edu: {refvsv5wd4hz9isc3rb2x6«’~;8ish742hj,"_,."" %ub_,:’lirﬂcs_,‘"'sf scvs

Figure 1: A self-certifying pathname

Design: Important high level ideas.

* Many ways to turn self-certifying pathnames into nice human readable
paths or include other key management methods:
Using symbolic links.
Creating secure bookmarks.
Certification authoritites.
Password authentication.
* If aserver’s private key is disclosed, then an attacker can pass malitious
files to server. Two mechanisms:
* Revoke key, which is done by the owner of the file system.
* Block HostlID.

Agent-=——
[Agert Authserver
Agent™—1 pron] [Authserver
Y Frotood]
T TTEEEe TTh [NFS3+kases) = t-----e--m-o----
' Client Master <€ / = Server Master
' ' MACed, Encrypted '
i Read-Write Client : TCP Connection L ... Read-Write Serve
: - SFS Server
Read-Only Client : [SFSreag-onlyprotoodl] s s me s s ssesssse e
' ' . > S{rver Master
' NFS Mounte : TCP COnnCCJOn '
R O . __ - Read-Only Serve
SFS Client SFS Server

Figure 2: The SFS system components

Implementation: client and server

authentication.
Need to establish secure channel on first *= key is changed
contact. periodically to
. . . . ks b
Animation based from figure in [1]. g:ee\;;r:,tgaﬁgi\c,ez Y

Find server via Location, HostID)
Ask for its key Ks

Send public key Ks

Send temp™* key Kc, split in half
Encrypt each half with Ks.

Decrypt msg w Ks’
Send similar msg encrypted w

Kc
After they have both pairs of key halves, they create new keys which use halves
from both keys. They will use these keys to communicate. Moreover, the client

knows that the server is who he claims he is.

Implementation: User and server
authentication.

Animation based off from figure in [1].

3 and 4. The authentication 2. The Agent returns a Agent

request gets forwarded to signed authentication
AuthServer, who has a list of request hashed with the
public keys and credentials. users private key, Ku’.
AuthServer verifies signature

and determines if request is

valid.
1. Client sends Authlnfo structure to client,
which contains the Location, Host ID and keys
for server-client communication (from previous
slide).
AuthServer 5. Returns credential and AuthlID to server.

6. Server assigns authentication number
to credentials, returns number to client.

Experimental results

* Set up:
— Compared SFS with and
without cryptographic

overhead versus NFS 3 over
UDP and NFS 3 over TCP.

* Experiment 1:
Microbenchmarks

— SFS has worse throughput and
latency in both cases.

— Authors attribute this to large
user-implementation cost,
not cryptographic overhead.

Latency | Throughput
File System (psec) | (Mbyte/sec)
NES 3 (UDP) 200 93
NES 3 (TCP) 220 76
SES 790 4.1
SES w/o encryption 770 7.1

Figure 5: Micro-benchmarks for basic operations.

Experimental results

Experiment 2: E2E performance on MAB and a
larger application (compiling a kernel).

— Results show that user-level implementation of
SFS is bottleneck.

- oca]

“il ; @@ NFS 3 (UDP)

94 CANFS3I(TCP)

sd = SFS =
é 63 e System Time (seconds)
g 3 - Local 140
£ NES 3 (UDP) 178

. NES 3 (TCP) 207

T ’] SFS 197

1 mm [I \ | oz A

dErectories copy attributes search compile total

Figure 7: Compiling the GENERIC FreeBSD 3.3 kernel.

Figure 6: Wall clock execution time (in seconds) for the dif-
ferent phases of the modified Andrew benchmark, run on dif-
ferent file systems. Local is FreeBSD's local FFS file system
on the server.

Subsequent work

This was David Mazieres’ PhD Thesis.

David Euresti made a Windows implementation
in 2002.

Even though SFS didn’t get a lot of attention, the
idea of separating key management from file
systems is still relevant today (e.g. UIA paper).

There’s been a lot of work in designing secure file
systems (Ori, Shark), specially for distributed
systemes.

Authors claim they use SFS numerous times in
the paper... Not so used in practice.

Final thoughts.

 Advantages:
— Decentralized, global, reasonably secure file system.

— Separates key management from user certification.
— Modular and portable design.
— Their model gives attackers a lot of power.
* Disadvantages:
— Only implemented for UNIX systems.
— Base performance is worse than current systems.
— SHA-1is no longer considered too secure.
— The authors fail to address why their system is better than SSL In a
technical way.

e Classmates Input.

References

* [1] Mazieres, Kaminsky, Kaashoek, Witchel.
Separating Key Management from File System
Security. MIT LCS, 1999

e [2] Fu, Kamisky, Mazieres. Using SFS for a
Secure Network File System. ;login: The
magazine of USENIX & SAGE, volume 27,

number 6, December 2002.

