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Motivation

* Millions of Internet users

 Demand for Internet services grows

* High variations in service load. Load spikes are expected
* Web services getting more complex

* Not static content anymore, dynamic content that require extensive
computation and I/O



Problem statement

* Services that support millions of users (massive concurrency)

* Responsive
* Robust
* Highly available

* Well conditioned service :
* Requestrate scales with the responserate

* Excessivedemanddoesnot degrade throughputand all clients experience an equal
response time penalty linear to the length of the queue (graceful degradation).

A notion of fairness



Thread-based concurrency
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Contention for resources and context switches cause high overhead
High number of threads degrades the throughputand response timeis greatly increased

Partial Solution: Bound number of threads
* Throughput maintained
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 But whatabout maxresponsetime? Some clients experience longwaitingtimes
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Transparent resource virtualization preventsapplication from adaptingto load changes and spotting
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Event-driven concurrency
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* Efficientand scalable concurrency

e Butdifficultto engineerand tune
* How order the processing of events. Scheduling challenges
* Difficulty to follow the flow of events
e Little support from OS
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Staged Event-Driven Architecture (SEDA)
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* Hybrid approach
* Thread-based concurrency models for ease of programming
* Event-based models for extensive concurrency

* Main Idea: Decompose service into stages separated by queues
* Each stage performs a subset of request processing



SEDA - Stage

* Event queuescan pose various control
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Controllers
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* Thread pool controller:ideal degree of concurrency fora stage
* Adjustnumber ofthreads by observingthe incomingqueue length
* Idle threadsareremoved

* Batchingcontroller:aimsatlow responsetime and high throughput
* Batchingfactor: number of events consumed at each iteration of the event handler
* Llarge batchingfactor: more locality, higher throughput
* Small batchingfactor: lower response time



SEDA Prototype: Sandstorm

* Implemented in Java

* Java provides software engineering benefits
* Built-in threading, automaticmemory management

* APIs are provided for naming, creating and destroying stages,
performing queue operations, controlling queue thresholds and
profiling and debugging

* Asynchronous|/O primitives are implemented using existing OS
primitives.
* The sockets interface consists of three stages: read, write and listen
* Asynchronous!/O file operations.



Evaluation

Evaluated Haboob a high-performance SEDA-based HTTP
server

e Used the static file load from SpecWEB99 benchmark, a realistic, industry-
standard benchmark

* 1 to 1024 clients making repeated requests
* Files sizes range from 102 to 921600 Bytes
* Total file set size is 3.31 GB

* Memory Cache of 200Mb

e Server runningon 4-way SMP 500 MHz Pentium Il system with 2 GB of
RAM

* 32 machines of a similar configuration were used for load generation



Other designs

* Apache Web server
* Thread-based concurrency
* Fixed-size process pool of 150 processes

* Flash Web server
* Event-based concurrency
* Single process handlingmost request-processing tasks.
* Up to 506 simultaneous connections(due to limitations of select system call).

* Haboob
* Hybrid approach. Event-based and thread-based concurrency
* Up to 1024 concurrent requests



Evaluation
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(b) Cumulative distribution of response time for 1024 clients



Evaluation

SEDA Flash Apache

Mean RT | 547 ms | 665 ms 475 ms
Max RT 3.8 sec | 37 sec | 1.7 minutes

 SEDA provides some fairness

* The other techniquessuffer from long TCP retransmit backoff times.
Requests rejected and re-submitted



Evaluation

e Under overload
* Requests with high computation
and 1/0 needs from 1024 clients

 Admission control policy by queues
e Can perform prioritization or
filtering during heavy load
* Adjustsize of queue according to
the response time
 Maintain low response time
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Summary

* New designs needed for the ever increasing demands of web services
* SEDA is thus proposed to reach the desired performance
* Combines thread-based and event-based concurrency models

* Splits an application into a network of stages with event queues in
between

* Dynamic resource controllers for each stage

e Simplified building high-concurrentservices by decoupling load
management from core application logic



Strengths

* High concurrency. Ability to scale to large numbers of concurrent
requests

* Ease of engineering. Simplify construction of well-conditioned
services

* Modularity. Each stage implemented and managed independently

* Adaption to load variations. Resource management adjusted
dynamically.

* Low variance in response time



Weaknesses

* Increased latency. A request traverse many stages and experiences
multiple context switches and additional delays due to queuing.

* On alightlyloaded server, the worst case context switching overhead can
dominate

* What about the average case performance?
Is the worst response time the most important metric to consider?

* Programming still harder than thread-based concurrency models



Thank you



