
SEDA:	An	Architecture	for	Well-Conditioned,	
Scalable	Internet	Services	

Matt	Welsh,	David	Culler,	and	Eric	Brewer	
Computer	Science	Division

University	of	California,	Berkeley

Operating	Systems	Principles	(SOSP-18),	Chateau	Lake	Louise,	Canada,	October	21-24,	2001.	



Motivation

• Millions	of	Internet	users
• Demand	for	Internet	services	grows
• High	variations	in	service	load.	Load	spikes	are	expected
• Web	services	getting	more	complex
• Not	static	content	anymore,	dynamic	content	that	require	extensive	
computation	and	I/O	



Problem	statement

• Services	that	support	millions	of	users	(massive	concurrency)
• Responsive
• Robust
• Highly	available

• Well	conditioned	service	:
• Request	rate	scales	with	the	response	rate
• Excessive	demand	does	not	degrade	throughput	and	all	clients	experience	an	equal	
response	time	penalty	linear	to	the	length	of	the	queue	(graceful	degradation).		

• A	notion	of	fairness



Thread-based	concurrency

• Contention	for	resources	and	context	switches	cause	high	overhead
• High	number	of	threads	degrades	the	throughput	and	response	time	is	greatly	increased
• Partial	Solution:	Bound	number	of	threads

• Throughput	maintained
• But	what	about	max	response	time?		Some	clients	experience	long	waiting	times

• Overcommitting	resources
• Transparent	resource	virtualizationprevents	application	from	adapting	to	load	changes	and	spotting	

bottlenecks



Event-driven	concurrency	

• Efficient	and	scalable	concurrency
• But	difficult	to	engineer	and	tune
• How	order	the	processing	of	events.	Scheduling	challenges
• Difficulty	to	follow	the	flow	of	events
• Little	support	from	OS



Staged	Event-Driven	Architecture	(SEDA)	

• Hybrid	approach
• Thread-based	concurrency	models	for	ease	of	programming
• Event-based	models	for	extensive	concurrency

• Main	Idea:	Decompose	service	into	stages	separated	by	queues
• Each	stage	performs	a	subset	of	request	processing



SEDA	- Stage

• Event	queues	can	pose	various	control	
policies	

• Modularity.	Each	stage	implemented	and	
managed	independently

• Explicit	event	delivery	facilitates	tracing	
flow	of	events	and	thus	spotting	
bottlenecks	and		debugging



Controllers

• Thread	pool	controller	:	ideal	degree	of	concurrency	for	a	stage
• Adjust	number	of	threads	by	observing	the	incoming	queue	length
• Idle	threads	are	removed

• Batching	controller	:	aims	at	low	response	time	and	high	throughput	
• Batching	factor:	number	of	events	consumed	at	each	iteration	of	the	event	handler

• Large	batching	factor	:	more	locality,	higher	throughput
• Small	batching	factor	:	lower	response	time	



SEDA	Prototype:	Sandstorm	

• Implemented	in	Java	
• Java	provides	software	engineering	benefits

• Built-in	threading,	automatic	memory	management

• APIs	are	provided	for	naming,	creating	and	destroying	stages,	
performing	queue	operations,	controlling	queue	thresholds	and	
profiling	and	debugging
• Asynchronous	I/O	primitives	are	implemented	using	existing	OS	
primitives.	
• The	sockets	interface	consists	of	three	stages:	read,	write	and	listen
• Asynchronous	I/O	file	operations.



Evaluation

• Used	the	static	file	load	from	SpecWEB99	benchmark,	a	realistic,	industry-
standard	benchmark
• 1	to	1024	clients	making	repeated	requests
• Files	sizes	range	from	102	to	921600	Bytes	
• Total	file	set	size	is	3.31	GB	
• Memory	Cache	of	200Mb
• Server	running	on	4-way	SMP	500	MHz	Pentium	III	system	with	2	GB	of	
RAM	
• 32	machines	of	a	similar	configuration	were	used	for	load	generation	

Evaluated	Haboob	a	high-performance	SEDA-based	HTTP	
server



Other	designs
• Apache	Web	server
• Thread-based	concurrency
• Fixed-size	process	pool	of	150	processes

• Flash	Web	server
• Event-based	concurrency
• Single	process	handling	most	request-processing	tasks.
• Up	to	506	simultaneous	connections	(due	to	limitations	of	select	system	call).

• Haboob
• Hybrid	approach.	Event-based	and	thread-based	concurrency
• Up	to	1024	concurrent	requests



Evaluation



Evaluation

• SEDA	provides	some	fairness

• The	other	techniques	suffer	from	long	TCP	retransmit	backoff times.	
Requests	rejected	and	re-submitted



Evaluation

• Under	overload
• Requests	with	high	computation	

and	I/O	needs from	1024	clients

• Admission	control	policy	by	queues
• Can	perform	prioritization	or	
filtering	during	heavy	load	

• Adjust	size	of	queue	according	to	
the	response	time

• Maintain	low	response	time



Summary	

• New	designs	needed	for	the	ever	increasing	demands	of	web	services
• SEDA	is	thus	proposed	to	reach	the	desired	performance
• Combines	thread-based	and	event-based	concurrency	models	
• Splits	an	application	into	a	network	of	stages	with	event	queues	in	
between
• Dynamic	resource	controllers	for	each	stage
• Simplified	building	high-concurrent	services	by	decoupling	load	
management	from	core	application	logic



Strengths

• High	concurrency.	Ability	to	scale	to	large	numbers	of	concurrent	
requests
• Ease	of	engineering.	Simplify	construction	of	well-conditioned	
services
• Modularity.	Each	stage	implemented	and	managed	independently
• Adaption	to	load	variations.	Resource	management	adjusted	
dynamically.	
• Low	variance	in	response	time



Weaknesses

• Increased	latency.	A	request	traverse	many	stages	and	experiences	
multiple	context	switches	and	additional	delays	due	to	queuing.
• On	a	lightly	loaded	server,	the	worst	case	context	switching	overhead	can	
dominate

• What	about	the	average	case	performance?
Is	the	worst	response	time	the	most	important	metric	to	consider?

• Programming	still	harder	than	thread-based	concurrency	models



Thank	you	


