SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services

Matt Welsh, David Culler, and Eric Brewer

Computer Science Division
University of California, Berkeley

Operating Systems Principles (SOSP-18), Chateau Lake Louise, Canada, October 21-24, 2001.



Motivation

* Millions of Internet users

 Demand for Internet services grows

* High variations in service load. Load spikes are expected
* Web services getting more complex

* Not static content anymore, dynamic content that require extensive
computation and I/O



Problem statement

* Services that support millions of users (massive concurrency)

* Responsive
* Robust
* Highly available

* Well conditioned service :
* Requestrate scales with the responserate

* Excessivedemanddoesnot degrade throughputand all clients experience an equal
response time penalty linear to the length of the queue (graceful degradation).

A notion of fairness



Thread-based concurrency

send result
network

network

Throughput, tasks/sec

30000

25000

20000

15000

10000

5000

Contention for resources and context switches cause high overhead
High number of threads degrades the throughputand response timeis greatly increased

Partial Solution: Bound number of threads
* Throughput maintained

.Latency .......
Linear (ideal) latency -+l

4 16 64 256 1024

Number of threads

 But whatabout maxresponsetime? Some clients experience longwaitingtimes

Overcommitting resources

I 400
Throughput s L
3 350

i1 300

i 4250

200

i J1s0

- 100

Transparent resource virtualization preventsapplication from adaptingto load changes and spotting

bottlenecks

Latency, msec



Event-driven concurrency

: y 40000
Throughput g
Latency ===
requeSt FSM 1 Linear (ideal) latency @
- 31 30000
disk @ i
[72] -
L s Y A i
< i 1 20000
Q.
g o
network 3 g
e g
= H
d o 10000
I
)
0 B-E-E--E- BB -0 L 0
1 32 1024 32768 1048576

Number of tasks in pipeline

* Efficientand scalable concurrency

e Butdifficultto engineerand tune
* How order the processing of events. Scheduling challenges
* Difficulty to follow the flow of events
e Little support from OS

Latency, msec



Staged Event-Driven Architecture (SEDA)

Socket listen

accept
s

connection HttpParse

HTTP

Socket read

request

R

\ parse
s
packet

read
m

file data

110

PageCache
miss

w e

cache hit

CacheMiss
-
cache I

request

-

HttpSend

packet

send
"o

Socket write

write
"

file 1/0O
j}

* Hybrid approach
* Thread-based concurrency models for ease of programming
* Event-based models for extensive concurrency

* Main Idea: Decompose service into stages separated by queues
* Each stage performs a subset of request processing



SEDA - Stage

* Event queuescan pose various control

.. Outgoing
policies E@' E;;%
. . Event Queue
 Modularity. Each stage implemented and \
managed independently ooog %%%% e
Thread Pool —OJ
* Explicit event delivery facilitates tracing @
flow of events and thus spotting :ﬁ" 55

bottlenecks and debugging Controller O




Controllers

111
Event Handler/' (E Event Handler/@ Other Stages
ENEN _NEER P) s 11
< 5353 ; < 5333
Observe Thread Pool
Lenath Thread Pool
S Adjust 4 111
~ Adjust Batching D —_—
>) Size Factor 2 Observe
T Rate
Threshold Running Avg

* Thread pool controller:ideal degree of concurrency fora stage
* Adjustnumber ofthreads by observingthe incomingqueue length
* Idle threadsareremoved

* Batchingcontroller:aimsatlow responsetime and high throughput
* Batchingfactor: number of events consumed at each iteration of the event handler
* Llarge batchingfactor: more locality, higher throughput
* Small batchingfactor: lower response time



SEDA Prototype: Sandstorm

* Implemented in Java

* Java provides software engineering benefits
* Built-in threading, automaticmemory management

* APIs are provided for naming, creating and destroying stages,
performing queue operations, controlling queue thresholds and
profiling and debugging

* Asynchronous|/O primitives are implemented using existing OS
primitives.
* The sockets interface consists of three stages: read, write and listen
* Asynchronous!/O file operations.



Evaluation

Evaluated Haboob a high-performance SEDA-based HTTP
server

e Used the static file load from SpecWEB99 benchmark, a realistic, industry-
standard benchmark

* 1 to 1024 clients making repeated requests
* Files sizes range from 102 to 921600 Bytes
* Total file set size is 3.31 GB

* Memory Cache of 200Mb

e Server runningon 4-way SMP 500 MHz Pentium Il system with 2 GB of
RAM

* 32 machines of a similar configuration were used for load generation



Other designs

* Apache Web server
* Thread-based concurrency
* Fixed-size process pool of 150 processes

* Flash Web server
* Event-based concurrency
* Single process handlingmost request-processing tasks.
* Up to 506 simultaneous connections(due to limitations of select system call).

* Haboob
* Hybrid approach. Event-based and thread-based concurrency
* Up to 1024 concurrent requests



Evaluation

Throughput, MBit/sec

240

220
200

= =
«E Apache
---@-= Flash

—&— Haboob

180

160

140

120
100

Fairness *.

80

60

40

20

0.78

1 1

1

0.76

16 32 64
Number of clients

128 256 512

(a) Throughput vs. number of clients

1024

Fairness

Prob [response time <= x]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

i

10

100

Response time, msec

1000

10000

100000

(b) Cumulative distribution of response time for 1024 clients



Evaluation

SEDA Flash Apache

Mean RT | 547 ms | 665 ms 475 ms
Max RT 3.8 sec | 37 sec | 1.7 minutes

 SEDA provides some fairness

* The other techniquessuffer from long TCP retransmit backoff times.
Requests rejected and re-submitted



Evaluation

e Under overload
* Requests with high computation
and 1/0 needs from 1024 clients

 Admission control policy by queues
e Can perform prioritization or
filtering during heavy load
* Adjustsize of queue according to
the response time
 Maintain low response time

Prob [response time <= x]

09

0.8

0.7

0.6

Habfoob with control

R i " 1 ]
10 100 1000 10000 100000 1e+06

Response time, msec



Summary

* New designs needed for the ever increasing demands of web services
* SEDA is thus proposed to reach the desired performance
* Combines thread-based and event-based concurrency models

* Splits an application into a network of stages with event queues in
between

* Dynamic resource controllers for each stage

e Simplified building high-concurrentservices by decoupling load
management from core application logic



Strengths

* High concurrency. Ability to scale to large numbers of concurrent
requests

* Ease of engineering. Simplify construction of well-conditioned
services

* Modularity. Each stage implemented and managed independently

* Adaption to load variations. Resource management adjusted
dynamically.

* Low variance in response time



Weaknesses

* Increased latency. A request traverse many stages and experiences
multiple context switches and additional delays due to queuing.

* On alightlyloaded server, the worst case context switching overhead can
dominate

* What about the average case performance?
Is the worst response time the most important metric to consider?

* Programming still harder than thread-based concurrency models



Thank you



