

Odessa: Enabling Interactive Perception Applications on Mobile Devices

Moo-Ryong Ra*, Anmol Sheth+, Lily Mummertx, Padmanabhan Pillai', David Wetherallo, Ramesh Govindan*

*USC ENL, *Technicolor, *Google, 'Intel, ^oUniversity of Washington

Presented by Mohammad Shahrad

Emerging Mobile Perception Applications

GPS Accelerometer

Sensing

Activity Recognition

Health, Traffic Monitoring

Location-Based Service Participatory
Sensing

Sensing Applications

Motivation

Problem

Measurement

Design

Emerging Mobile Perception Applications

HD Camera
Sensing

Dual-Core CPU

Computation

Cloud Infrastructure

Communication

Mobile Interactive Perception Application

Motivation

Measurement

Vision-based Interactive Mobile Perception Applications

Face Recognition Object and Pose Recognition

Gesture Recognition

Motivation

Problem

Measurement

Design

Common Characteristics

Interactive

Crisp response time (10 ms ~ 200 ms)

High Data-Rate

Processing video data of 30 fps

Compute Intensive

Computer Vision based algorithms

Enabling Mobile Interactive Perception

Performance

Throughput

Makespan

Application	Throughput	Mckespan
Face Recognition	2.50 fps	2.09 s
Object and Pose Recognition	0.09 fps	15.8 s
Gesture Recognition	0.42 fps	2.54

All running locally on mobile device

Video of 1 fps

Speed-up Techniques

Main Focus

Data Flow Structure

Offloading

Parallelism

System Support

Enable Mobile Interactive Perception Application

Contributions

What factors impact offloading and parallelism?

Measurement

How do we improve throughput and makespan simultaneously?

Odessa Design

How much benefits can we get?

Measurement

Input Data Variability

Varying Capabilities of Mobile Platform

Network Performance

Effects of Parallelism

Lesson I: Input Variability

The system should adapt to the variability at runtime

Lesson II: Effects of Data Parallelism

Object and Pose Recognition

# of Threads	Thread 1	Thread 2	Thread 3
1	1,203 ms	-	-
2	741 ms	465 ms	-
3	443 ms	505 ms	233 ms

Input Complexity Segmentation Method

The level of data parallelism affects accuracy and performance.

Summary: Major Lessons

Offloading decisions must be made in an adaptive way.

The level of data parallelism cannot be determined a priori.

A static choice of pipeline parallelism can cause sub-optimal performance.

Odessa

Offloading DEcision System for Streaming Applications

Incremental Decision Making Process

Evaluation Methodology

Implementation

Linux / C++

Experiments

Odessa Adaptation

Resulting Partitions

Performance Comparison

1-core Netbook

2-core Laptop

8-core Server

Motivation

Problem

Approach

Desi

Data-Flow Graph

Odessa Adaptation

Resulting Partitions in Different Devices

nition	Client Device	Stage Officeded and Instances		Degree of Pipeline Parallelism			
Recogi	Mobile Device		Face detection (2)			3.39	
Face	Dual Core Notebook		Nothing			3.99	

Client Device	Stage Offloaded and Instances		Degree of Pipeline Parallelism		
Mobile Device	Face Detection (1) Motion-SIFT Feature (4)		3.06		
Dual Core Notebook	Face Detection (1) Motion-SIFT Feature (9)		5.14		

Resulting partitions are often very different for different client devices.

Motivation Problem Approach

Gesture Recognition

Performance Comparison with Other Strategy

Object and Pose Recognition Application

Strategy	Throughput (FPS)	Makespan (Latency)
Local	0.09	15,800 ms
Offload-All	0.76	4,430 ms
Domain-Specific	1.51	2,230 ms
Offline-Optimal	6.49	430 ms
Odessa	6.27	807 ms

Odessa performs 4x better than the partition suggested by domain expert, close to the offline optimal strategy.

Motivation

Approac

Related Work

- ILP solver for saving energy: [MAUI] [CloneCloud]
- Graph-based partitioning: [Gu'04] [Li'02] [Pillai'09] [Coign]
- Static Partitioning: [Wishbone] [Coign]
- A set of *pre-specified* partitions: [CloneCloud] [Chroma] [Spectra]

Motivation

Problem

Approac

Design

Summary of Odessa

Adaptive & Incremental runtime for mobile perception applications

- Odessa system design using novel workloads.
- Understanding of the factors which contribute to the offloading and par allelism decisions.
- Extensive evaluation on prototype implementation.

Odessa's quick adaptation?

Figure 14: Odessa adapting to changes in network performance. The network bandwidth is reduced from 100 Mbps to 5 Mbps at frame number 1237. Odessa pulls back the offloaded stages from the server to the local machine to reduce the data transmitted over the network.

- It takes 70 frames to adapt to new network condition.
- Throughput during that period: ~1.5fps
- So it took almost 47 seconds to adapt!

Other Thoughts

- Limited to stream processing apps (mostly because of Sprout)
- The security risks totally ignored
- The implementation not built for cloud
- Adding content-aware data parallelism to improve app fidelity loss
- They could also present the power gains.

Thank you

"Any questions?"