ELYL MobiSys’11

Odessa: Enabling Interactive Perception
Applications on Mobile Devices

Moo-Ryong Ra*, Anmol Sheth?,
Lily MummertX, Padmanabhan Pillal’,
David Wetherall°, Ramesh Govindan*

*USC ENL, *Technicolor, *Google, ‘Intel,
°University of Washington

Presented by Mohammad Shahrad



Emerging Mobile Perception Applications
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Emerging Mobile Perception Applications
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Vision-based Interactive Mobile Perception Applications
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Common Characteristics

Interactive

e Crisp response time ( 10 ms ~ 200 ms)

High Data-Rate

e Processing video data of 30 fps

Compute Intensive

e Computer Vision based algorithms
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Enabling Mobile Interactive Perception

Performance

Throughput 'f‘ Makespan \7
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All running locally on mobile device

Video of 1 fps
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Speed-up Techniques

Data Parallelism Pipeline Parallelism
Offloading
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Main Focus

Data Flow Structure

Ofﬂoadmg + ParaIIellsm

System Support

Enable Mobile Interactive Perception Application
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Contributions

What factors impact offloading and parallelism?

Measurement

How do we improve
throughput and makespan simultaneously?

Odessa Design

How much benefits can we get?

Evaluation
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Measurement

Input Data Variability

Varying Capabilities of Mobile Platform

Network Performance

Effects of Parallelism
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Lesson | : Input Variability

Object and Pose Recognition
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Lesson |ll: Effects of Data Parallelism

Object and Pose Recognition

1,203 ms -
2 741 ms 465 ms -
3 443 ms 505 ms 233 ms

Input Segmentation
Complexity Method

The level of data parallelism affects accuracy and performance.
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Summary: Major Lessons

Offloading decisions must be made
in an adaptive way.

The level of data parallelism
cannot be determined a priori.

A static choice of pipeline parallelism can
cause sub-optimal performance.
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Odessa

Offloading DEcision System for Streaming Applications
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Incremental Decision Making Process

[ f Cloud J Incremental decisions adapt quickly
Infrastructure to input and platform variability.
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Evaluation Methodology

2-core Laptop
8-core Server

1-core Netbook }

Odessa Adaptation

Resulting Partitions

Performance Comparison

~ ~ -




17

Data-Flow Graph
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Odessa Adaptation

Object and Pose Recognition
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A desirable
configuration
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Resulting Partitions in Different Devices
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Resulting partitions are often very different

for different client devices.
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Performance Comparison with Other Strategy

Object and Pose Recognition Application

Throughput (FPS) | Makespan (Latency)

Local 0.09 15,800 ms

Offload-All 0.76 4,430 ms

Domain-Specific 1.51 2,230 ms
Offline-Optimal 6.49 430 ms
Odessa 6.27 807 ms

Odessa performs 4x better than

the partition suggested by domain expert,
close to the offline optimal strategy.
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Related Work

3
/

ILP solver for saving energy: [MAUI] [CloneCloud]

Graph-based partitioning: [Gu’04] [Li’02] [Pillai’09] [Coign]
Static Partitioning: [Wishbone] [Coign]

A set of pre-specified partitions: [CloneCloud] [Chroma] [Spectra]
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Summary of Odessa

Stages of Interactive Pe
rception Application

Sprout

Multi-Core Server

.................

Stages of Interactive Pe
rception Application

|
sprout | Odessa

fAdaptive & Incremental runtimefo\r

mobile perception applications

Odessa system design using novel
workloads.

. Understanding of the factors which
contribute to the offloading and par
allelism decisions.

Extensive evaluation on prototype

implementation. /
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Odessa’s quick adaptation?
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Figure 14: Odessa adapting to changes in network perfor-
mance. The network bandwidth is reduced from 100 Mbps to
S Mbps at frame number 1237. Odessa pulls back the offloaded
stages from the server to the local machine to reduce the data
transmitted over the network.

It takes 70 frames to adapt to new
network condition.

Throughput during that period: ~1.5fps

So it took almost 47 seconds to adapt!



Other Thoughts

e Limited to stream processing apps
(mostly because of Sprout)

ne security risks totally ighored

ne implementation not built for cloud

e Adding content-aware data parallelism to
improve app fidelity loss

e They could also present the power gains.
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“Any questions?”



