MapReduce: Simplified Data
Processing on Large Clusters

Jeffry Dean and Sanjay Ghemawat
ODSI 2004
Presented by Anders Miltner




Problem

 When applied on to big data, simple algorithms become more
complicated
 Parallelized computations
* Distributed data
* Failure handling

* How can we abstract away these common difficulties, allowing the
programmer to be able to write simple code for their simple
algorithms?



Core Ideas

* Require the programmer to state their problemin terms of two
functions, map and reduce

* Handle the scalability concerns inside the system, instead of requiring
the programmer to handle them

* Require the programmer to only write code about the easy to
understand functionality



Map, Reduce, and MapReduce

* map: (k1,v1) -> list (k2, v2)
* reduce: (k2, list v2) -> list (v2)
* mapreduce: list (k1,v1) -> list (k2, list v2)



Example

e Word Count in a lot of documents

map (String key, String value):

// key: document name

// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

reduce (String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt (v);

Emit (AsString(result));



Architecture

split 0

* Large clusters of commodity PCs il o
* Input files partitioned into M splits k _
* Intermediate keys partitioned into R o e o

distributions

* Written to disk, remotely read by
workers



Master vs Worker

* Only 1 master, many (thousands) workers
* Workers do the computations of maps and reduces
* Masters handle failures, assign tasks to workers



Failure Detection and Recovery

* Master pings workers to determine if they are failed

* Map worker failure:
* Reexecute map tasks

* Reduce worker failure:
* Redo if not completed, don’t otherwise

 Master failure:
* Do nothing



Locality

e Use GFS for file storage of input data
* Map tasks assigned to minimize network time



Task Granularity

* Map phase has M pieces
 Reduce phase has R pieces

* M+ R > # machines
 Dynamic load balancing
* Worker failure recovery



Backup Tasks

* Stragglers happen
* Hard diskissues
* Bad scheduling

* Have back up executions
* Executions complete when primary or backup complete

* Occurs intelligently



Refinements

* Partitioning Function

e Ordering Guarantees

* Combiner Function

* Input and Output Types
 Side-effects

e Skipping Bad Records
 Local Execution
 Status Information

* Counters



Performance Setup

* Measured on 1800 machine cluster
* 2GHz processors
* 4GB memory
e 2 160GB disks
* Gigabit Ethernet



Performance

* Grep

10710 100 byte records in 150s

* Sort

10710 100 byte recordsin 891s

Number of instances in source tree

1000

800 —

600 —

400 —

€0/€00T

90/£00¢T

60/€00C

C1/€00C

£0/700C

90/+00C

60/¥00C

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 —
Done
15000
10000

5000 —

— T
500 1000

20000 —
15000

10000
5000 —

—
500 1000
20000 —
15000

10000 —
5000

ol L |
500 1000
Seconds

(a) Normal execution

20000 —
Done
15000 —
10000 —
5000
0 ——
500 1000
20000 —
15000 —
10000
N
oA
500 1000
20000 —
15000 —
10000 —
0t e
500 1000
Seconds
(b) No backup tasks

20000 —
15000 —
10000

5000 —

20000 —
15000
10000

5000

20000 —
15000
10000 —

5000

T —r
500 1000

—f— —T
500 1000

Seconds
(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

Number of jobs
Average job completion time
Machine days used

29,423
634 secs
79,186 days

Input data read
Intermediate data produced
Output data written

3,288 TB
758 TB
193 TB

Average worker machines per job
Average worker deaths per job
Average map tasks per job
Average reduce tasks per job

157
1.2
3,351
55

Unique map implementations
Unique reduce implementations
Unique map/reduce combinations

395
269
426

Table 1: MapReduce jobs run in August 2004

i L
500 1000



Pros/Cons

* Pros
* Nice abstraction
» Resilientto failures
* Lots of different extensions for different functionality
» Speedy for a certain amount of data

* Cons
* Doesn’t scale to giant amounts of data (master requires O(M*R) info)
e Lot of disk 10
* Requires batches to be completed before going to next stage
* Not all problems can be expressed in terms of map and reduce



Further Work

* MapReduce Online
* Pipeline the stages

* Google’s Cloud DataFlow

. ”Simlple, Bowerful model for buildingbatch and streaming parallel data processing
pipelines

* Hadoop
* Utilizes mapreduce alongside storage
e JobTrackerand TaskTracker

* Piccolo
* [Inmemory
* Dryad

* Directed graph of vertices and channels



