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Problem

• When	
  applied	
  on	
  to	
  big	
  data,	
  simple	
  algorithms	
  become	
  more	
  
complicated
• Parallelized	
  computations
• Distributed	
  data
• Failure	
  handling

• How	
  can	
  we	
  abstract	
  away	
  these	
  common	
  difficulties,	
  allowing	
  the	
  
programmer	
  to	
  be	
  able	
  to	
  write	
  simple	
  code	
  for	
  their	
  simple	
  
algorithms?



Core	
  Ideas

• Require	
  the	
  programmer	
  to	
  state	
  their	
  problem	
  in	
  terms	
  of	
  two	
  
functions,	
  map	
  and	
  reduce
• Handle	
  the	
  scalability	
  concerns	
  inside	
  the	
  system,	
  instead	
  of	
  requiring	
  
the	
  programmer	
  to	
  handle	
  them
• Require	
  the	
  programmer	
  to	
  only	
  write	
  code	
  about	
  the	
  easy	
  to	
  
understand	
  functionality



Map,	
  Reduce,	
  and	
  MapReduce

• map:	
  (k1,v1)	
  -­‐>	
  list	
  (k2,	
  v2)
• reduce:	
  (k2,	
  list	
  v2)	
  -­‐>	
  list	
  (v2)
• mapreduce:	
  list	
  (k1,v1)	
  -­‐>	
  list	
  (k2,	
  list	
  v2)



Example

• Word	
  Count	
  in	
  a	
  lot	
  of	
  documents

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
⟨URL,1⟩. The reduce function adds together all values
for the same URL and emits a ⟨URL,total count⟩
pair.

Reverse Web-Link Graph: The map function outputs
⟨target,source⟩ pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
⟨target, list(source)⟩

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of ⟨word, frequency⟩ pairs. The
map function emits a ⟨hostname,term vector⟩
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
⟨hostname,term vector⟩ pair.
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of ⟨word,document ID⟩
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
⟨word, list(document ID)⟩ pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a ⟨key,record⟩ pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data
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• Large	
  clusters	
  of	
  commodity	
  PCs
• Input	
  files	
  partitioned	
  into	
  M	
  splits
• Intermediate	
  keys	
  partitioned	
  into	
  R	
  
distributions
• Written	
  to	
  disk,	
  remotely	
  read	
  by	
  
workers



Master	
  vs	
  Worker

• Only	
  1	
  master,	
  many	
  (thousands)	
  workers
• Workers	
  do	
  the	
  computations	
  of	
  maps	
  and	
  reduces
• Masters	
  handle	
  failures,	
  assign	
  tasks	
  to	
  workers



Failure	
  Detection	
  and	
  Recovery

• Master	
  pings	
  workers	
  to	
  determine	
  if	
  they	
  are	
  failed
• Map	
  worker	
  failure:
• Reexecute map	
  tasks

• Reduce	
  worker	
  failure:
• Redo	
  if	
  not	
  completed,	
  don’t	
  otherwise

• Master	
  failure:
• Do	
  nothing



Locality

• Use	
  GFS	
  for	
  file	
  storage	
  of	
  input	
  data
• Map	
  tasks	
  assigned	
  to	
  minimize	
  network	
  time



Task	
  Granularity

• Map	
  phase	
  has	
  M	
  pieces
• Reduce	
  phase	
  has	
  R	
  pieces
• M	
  +	
  R	
  >	
  #	
  machines
• Dynamic	
  load	
  balancing
• Worker	
  failure	
  recovery



Backup	
  Tasks

• Stragglers	
  happen
• Hard	
  disk	
  issues
• Bad	
  scheduling

• Have	
  back	
  up	
  executions
• Executions	
  complete	
  when	
  primary	
  or	
  backup	
  complete

• Occurs	
  intelligently



Refinements

• Partitioning	
  Function
• Ordering	
  Guarantees
• Combiner	
  Function
• Input	
  and	
  Output	
  Types
• Side-­‐effects
• Skipping	
  Bad	
  Records
• Local	
  Execution
• Status	
  Information
• Counters



Performance	
  Setup

• Measured	
  on	
  1800	
  machine	
  cluster
• 2GHz	
  processors
• 4GB	
  memory
• 2	
  160GB	
  disks
• Gigabit	
  Ethernet



Performance

• Grep
• 10^10	
  100	
  byte	
  records	
  in	
  150s

• Sort
• 10^10	
  100	
  byte	
  records	
  in	
  891s
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Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

To appear in OSDI 2004 9

5.4 Effect of Backup Tasks

In Figure 3 (b), we show an execution of the sort pro-
gram with backup tasks disabled. The execution flow is
similar to that shown in Figure 3 (a), except that there is
a very long tail where hardly any write activity occurs.
After 960 seconds, all except 5 of the reduce tasks are
completed. However these last few stragglers don’t fin-
ish until 300 seconds later. The entire computation takes
1283 seconds, an increase of 44% in elapsed time.

5.5 Machine Failures

In Figure 3 (c), we show an execution of the sort program
where we intentionally killed 200 out of 1746 worker
processes several minutes into the computation. The
underlying cluster scheduler immediately restarted new
worker processes on these machines (since only the pro-
cesses were killed, the machines were still functioning
properly).
The worker deaths show up as a negative input rate
since some previously completed map work disappears
(since the corresponding map workers were killed) and
needs to be redone. The re-execution of this map work
happens relatively quickly. The entire computation fin-
ishes in 933 seconds including startup overhead (just an
increase of 5% over the normal execution time).

6 Experience

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker
machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:

• large-scale machine learning problems,

• clustering problems for the Google News and
Froogle products,

• extraction of data used to produce reports of popular
queries (e.g. Google Zeitgeist),

• extraction of properties of web pages for new exper-
iments and products (e.g. extraction of geographi-
cal locations from a large corpus of web pages for
localized search), and

• large-scale graph computations.
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Figure 4: MapReduce instances over time

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Table 1: MapReduce jobs run in August 2004

Figure 4 shows the significant growth in the number of
separate MapReduce programs checked into our primary
source code management system over time, from 0 in
early 2003 to almost 900 separate instances as of late
September 2004. MapReduce has been so successful be-
cause it makes it possible to write a simple program and
run it efficiently on a thousand machines in the course
of half an hour, greatly speeding up the development and
prototyping cycle. Furthermore, it allows programmers
who have no experience with distributed and/or parallel
systems to exploit large amounts of resources easily.
At the end of each job, the MapReduce library logs
statistics about the computational resources used by the
job. In Table 1, we show some statistics for a subset of
MapReduce jobs run at Google in August 2004.

6.1 Large-Scale Indexing

One of our most significant uses of MapReduce to date
has been a complete rewrite of the production index-
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Pros/Cons

• Pros
• Nice	
  abstraction
• Resilient	
  to	
  failures
• Lots	
  of	
  different	
  extensions	
  for	
  different	
  functionality
• Speedy	
  for	
  a	
  certain	
  amount	
  of	
  data

• Cons
• Doesn’t	
  scale	
  to	
  giant	
  amounts	
  of	
  data	
  (master	
  requires	
  O(M*R)	
  info)
• Lot	
  of	
  disk	
  IO
• Requires	
  batches	
  to	
  be	
  completed	
  before	
  going	
  to	
  next	
  stage
• Not	
  all	
  problems	
  can	
  be	
  expressed	
  in	
  terms	
  of	
  map	
  and	
  reduce



Further	
  Work

• MapReduce Online
• Pipeline	
  the	
  stages

• Google’s	
  Cloud	
  DataFlow
• “Simple,	
  powerful	
  model	
  for	
  building	
  batch	
  and	
  streaming	
  parallel	
  data	
  processing	
  
pipelines”

• Hadoop
• Utilizes	
  mapreducealongside	
  storage
• JobTracker and	
  TaskTracker

• Piccolo
• In	
  memory

• Dryad
• Directed	
  graph	
  of	
  vertices	
  and	
  channels


