
MapReduce Online
by Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.

Hellerstein, Khaled Elmeleegy, Russell Sears

My Name

• Yuanzhi Li

The Goal

• A modified MapReduce architecture allows data to
be pipelined between operators.

• Preserve the architecture of Hadoop

Pipeline?

• Mapper can push “incomplete” data to reducer.

• Reducer can generate an approximation of the final
answer for incomplete data, also known as online
aggregation

MapReduce

• Input: Jobs

• Map function for each job: map a job to a bunch of
key-value pairs

• Reduce function: gather values for each key and
process it.

Hadoop MapReduce

• Single Master Node: JobTracker: Accept jobs from
client and divide them into tasks (a portion of the
input file).

• Many worker nodes: TaskTracker

Map Execution

• Map phase: read the split and apply map

• Commit phase: after the map function complete a
split, it registers the final output with the
TaskTracker, which informs the JobTracker

Reduce Execution

• Shuffle phase: fetch the reduce task’s input data
produced by map (after a map has commit), using
HTTP request.

• Sort phase: group records with same key

• Reduce phase: apply user defined reduce function

What is bad?

• The output of Map/Reduce must be written to disk
before it can be consumed.

Pipelined MapReduce

• Pipeline between tasks

• Pipeline between jobs

Big Picture

• Map task has two phases: map, sort.

• Reduce task has three phases: shuffle, reduce,
commit.

Pipeline inside a job
• Run each map function in a thread, store the output in a

memory buffer (Map Phase)

• When the buffer exceed certain threshold, map function apply
a combine operation of values for each key to create “spill
file”.

• For each key, if the there is no reduce task for it, then write
down the values to disk. If there is a reduce task, pipeline the
spill file using TCP connection (Shuffle Phase).

• Reduce task can merge the “spill file” on going, once all map
tasks complete, it will apply reduce function (Reduce Phase).

To make it a system

• Each reducer can only receive pipeline data from a
bounded number of maps, for the rest it proceeds
like traditional Hadoop — To reduce the number of
TCP connections

• When reducer is too slow (the number of unsent
spill file blows): map will try to merge different spill
files (Sort Phase) — Adaptive load balancing.

Fault Tolerance: Map task
failure

• Add bookkeeping to the reduce task to record
which map task produced each pipelined spill file.

• Reduce task can merge spill files from same
uncommitted map.

• Map task periodically send checkpoints to
JobTracker indicating how much input file it has
proceeded.

• Spills before the latest checkpoint can be merged.

Fault Tolerance: Reduce
task failure

• Map tasks retain their output data on the local disk
for the complete job duration.

• New reduce task just restart from beginning.

Multiple jobs setting
• User can submit a list of jobs that forms a directed

acyclic graph.

• A map function consumes the output of previous
reduce functions.

• Usually, this map function can not start until all its
previous reduce functions complete (process all
the data).

Pipeline between jobs
• Reduce function apply to the data it has so far,

generate a snapshot, write it to the Hadoop file
system.

• Map function of next job can consume the
snapshot by pulling it out from file system.

• User can specify how often a snapshot is
computed according to the progression metric
(percentage of data arrived at reducer)

Multiple jobs aggregation

• Say job A uses the output of job B

• Each time the reduce of A computes a snapshot,
send it to B’s map and proceed it a little bit, then
B’s reduce compute another snapshot.

• B’s snapshot must be recomputed every time it
receives a new snapshot from A.

Continuous MapReduce
Jobs

• Run MapReduce in real time

• Accepting Data as it becomes available and
analyze it immediately.

Key Idea

• Add a optional “flush” operation to push data from
map tasks to reduce tasks, when reduce task can
not accept the data, the mapper will store it locally
and send it later.

• User defined reduce task will periodically invoked
on the output of the map available.

Fault Tolerance

• Problem here: map tasks can not remember the
entire history to fast recover from reduce failure.

• They assume that reducer only depends on a suffix
of the map history.

• Use ring buffer for map-side spill files.

Evaluation
where’s the time consumption

• Map task two phases: map (most), sort

• Reduce task three phases: shuffle (75%), sort &
commit (25%).

What they observe

• When reduce task is fast, map is slow, then they
can improve over block MapReduce.

• When reduce task is bottleneck, they have no
improvement.

When reduce task is fast

When reduce task is slow

Strength

• Preserve original MapReduce Architecture

• Allow pipeline/online aggregation

Weakness

• Snapshot accuracy is hard to evaluate

• Perform badly when reduce task is slow

• Only support fixed number of map/reduce tasks

• Failure recovery requires remembering entire
history in worse case

