MapReduce Online

by Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
ellerstein, Khaled Elmeleegy, Russell Sears




My Name

e Yuanzhi LI



The Goal

* A modified MapReduce architecture allows data to
be pipelined between operators.

* Preserve the architecture of Hadoop



Pipeling?

* Mapper can push “incomplete” data to reducer.

* Reducer can generate an approximation of the final
answer for incomplete data, also known as online

aggregation



MapReduce

* |nput: Jobs

 Map function for each job: map a job to a bunch of
key-value pairs

* Reduce function: gather values for each key and
process It.



Hadoop MapReduce

e Single Master Node: JobTracker: Accept jobs from

client and divide them into tasks (a portion of the
input file).

 Many worker nodes: Tasklracker



Map execution

* Map phase: read the split and apply map

« Commit phase: after the map function complete a
split, it registers the final output with the
TaskTracker, which informs the JobTracker



Reduce Execution

» Shuffle phase: fetch the reduce task’s input data
produced by map (after a map has commit), using
HTTP request.

e Sort phase: group records with same key

* Reduce phase: apply user defined reduce function



What Is bad?

* The output of Map/Reduce must be written to disk
before it can be consumed.



Plpelined MapReduce

* Pipeline between tasks

* Pipeline between jobs



B1g Picture

 Map task has two phases: map, sort.

 Reduce task has three phases: shuffle, reduce,
commit.



Pipeline inside a |ob

Run each map function in a thread, store the output in a
memory buffer (Map Phase)

When the buffer exceed certain threshold, map function apply
a combine operation of values tor each key to create “spill
file”.

For each key, If the there is no reduce task for it, then write
down the values to disk. If there is a reduce task, pipeline the
spill file using TCP connection (Shuffle Phase).

Reduce task can merge the “spill file” on going, once all map
tasks complete, it will apply reduce function (Reduce Phase).



o make It a system

 Each reducer can only receive pipeline data from a

TCP connections

 When reducer is too slow (the number of unsent

oounded number of maps, for the rest it proceeds
ke traditional Hadoop — To reduce the number of

spill file blows): map will try to merge ditferent s
files (Sort Phase) — Adaptive load balancing.

olll



Fault Tolerance: Map task
fallure

Add bookkeeping to the reduce task to record
which map task produced each pipelined spill file.

Reduce task can merge spill files from same
uncommitted map.

Map task periodically send checkpoints to
JobTracker indicating how much input file it has
proceeded.

Spills before the latest checkpoint can be merged.



Fault Tolerance: Reduce
task failure

* Map tasks retain their output data on the local disk
for the complete job duration.

* New reduce task just restart from beginning.



Multiple Jjobs setting

* User can submit a list of jobs that forms a directed
acyclic graph.

A map function consumes the output of previous
reduce functions.

* Usually, this map function can not start until all its

porevious reduce functions complete (process all
the data).



Plpeline between Jobs

 Reduce function apply to the data it has so far,
generate a snapshot, write it to the Hadoop file
system.

* Map function of next job can consume the
snapshot by pulling it out from file system.

* User can specity how often a snapshot is
computed according to the progression metric
(percentage of data arrived at reducer)



Multiple jolbs aggregation

e Say job A uses the output of job B

 Each time the reduce of A computes a snapshot,
send it to B's map and proceed it a little bit, then
B's reduce compute another snapshot.

* B’s snapshot must be recomputed every time it
receives a new snapshot from A.



Continuous MapReduce
JOoDsS

* Run MapReduce in real time

* Accepting Data as it becomes available and
analyze it immediately.



Key ldea

 Add a optional “flush” operation to push data from
map tasks to reduce tasks, when reduce task can

not accept the data, the mapper will store it locally
and send it later.

* User defined reduce task will periodically invoked
on the output of the map available.



Fault lolerance

* Problem here: map tasks can not remember the
entire history to fast recover from reduce failure.

* They assume that reducer only depends on a suffix
of the map history.

* Use ring buffer tor map-side spill files.



Evaluation
where’'s the time consumption

 Map task two phases: map (most), sort

 Reduce task three phases: shuffle (75%), sort &
commit (25%).



What they observe

 When reduce task is fast, map is slow, then they
can improve over block MapReduce.

 When reduce task is bottleneck, they have no
Improvement.



When reduce task is fast

10 GB Blocking (5 Reduces) 10 GB Pipelining (5 Reduces)

Map progress = = Reduce progress Map progress = = Reduce progress
100% 100%
80% /_ 80%
§ eo% g oo%
g o E aox
20% 20%
0% 0%

0 S50 100 150 200 250 300 350 400 450 500 550 0 S50 100 150 200 250 300 350 400 450 500 550
Time (seconds) Time (seconds)

Figure 7: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 5 reduce
tasks (512MB block size). The total job runtimes were 561 seconds for blocking and 462 seconds for pipelining.

10 GB Blocking (20 Reduces) 10 GB Pipelining (20 Reduces)
Map progress = = Reduce progress Map progress = = Reduce progress
100% 100%
80% 80%
60% 60%
E 40% E 40%
20% 20%
0% 0%
0 S0 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Time (seconds) Time (seconds)

Figure 8: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 20 reduce
tasks (512MB block size). The total job runtimes were 361 seconds for blocking and 290 seconds for pipelining.



When reduce task IS slow

10 GB Blocking (1 Reduce) 10 GB Pipelining (1 Reduce)

Map progress = = Reduce progress Map progress = = Reduce progress
100% 100%
80% _/—/ o
£ 60% / 2 60%

B / B
£ ao% y £ a0%
20% 7 20%
0% 0%
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time (minutes) Time (minutes)

Figure 9: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 1 reduce
task (512MB block size). The total job runtimes were 29 minutes for blocking and 34 minutes for pipelining.



Strength

* Preserve original MapReduce Architecture

* Allow pipeline/online aggregation



Weakness

Snapshot accuracy is hard to evaluate
Perform badly when reduce task is slow
Only support fixed number of map/reduce tasks

Failure recovery requires remembering entire
history in worse case



