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The Goal

• A modified MapReduce architecture allows data to 
be pipelined between operators.  

• Preserve the architecture of Hadoop



Pipeline?

• Mapper can push “incomplete” data to reducer.  

• Reducer can generate an approximation of the final 
answer for incomplete data, also known as online 
aggregation



MapReduce

• Input: Jobs 

• Map function for each job: map a job to a bunch of 
key-value pairs 

• Reduce function: gather values for each key and 
process it.



Hadoop MapReduce

• Single Master Node: JobTracker: Accept jobs from 
client and divide them into tasks (a portion of the 
input file). 

• Many worker nodes: TaskTracker



Map Execution

• Map phase: read the split and apply map 

• Commit phase: after the map function complete a 
split, it registers the final output with the 
TaskTracker, which informs the JobTracker



Reduce Execution

• Shuffle phase: fetch the reduce task’s input data 
produced by map (after a map has commit), using 
HTTP request. 

• Sort phase: group records with same key 

• Reduce phase: apply user defined reduce function



What is bad?

• The output of Map/Reduce must be written to disk 
before it can be consumed.



Pipelined MapReduce

• Pipeline between tasks 

• Pipeline between jobs



Big Picture

• Map task has two phases: map, sort. 

• Reduce task has three phases: shuffle, reduce, 
commit. 



Pipeline inside a job
• Run each map function in a thread, store the output in a 

memory buffer (Map Phase) 

• When the buffer exceed certain threshold, map function apply 
a combine operation of values for each key to create “spill 
file”. 

• For each key, if the there is no reduce task for it, then write 
down the values to disk. If there is a reduce task, pipeline the 
spill file using TCP connection (Shuffle Phase).  

• Reduce task can merge the “spill file” on going, once all map 
tasks complete, it will apply reduce function (Reduce Phase). 



To make it a system

• Each reducer can only receive pipeline data from a 
bounded number of maps, for the rest it proceeds 
like traditional Hadoop — To reduce the number of 
TCP connections 

• When reducer is too slow (the number of unsent 
spill file blows): map will try to merge different spill 
files (Sort Phase) — Adaptive load balancing. 



Fault Tolerance: Map task 
failure

• Add bookkeeping to the reduce task to record 
which map task produced each pipelined spill file.  

• Reduce task can merge spill files from same 
uncommitted map. 

• Map task periodically send checkpoints to 
JobTracker indicating how much input file it has 
proceeded.  

• Spills before the latest checkpoint can be merged. 



Fault Tolerance: Reduce 
task failure

• Map tasks retain their output data on the local disk 
for the complete job duration. 

• New reduce task just restart from beginning. 



Multiple jobs setting
• User can submit a list of jobs that forms a directed 

acyclic graph. 

• A map function consumes the output of previous 
reduce functions. 

• Usually, this map function can not start until all its 
previous reduce functions complete (process all 
the data). 



Pipeline between jobs
• Reduce function apply to the data it has so far, 

generate a snapshot, write it to the Hadoop file 
system. 

• Map function of next job can consume the 
snapshot by pulling it out from file system. 

• User can specify how often a snapshot is 
computed according to the progression metric 
(percentage of data arrived at reducer)



Multiple jobs aggregation 

• Say job A uses the output of job B 

• Each time the reduce of A computes a snapshot, 
send it to B’s map and proceed it a little bit, then 
B’s reduce compute another snapshot.  

• B’s snapshot must be recomputed every time it 
receives a new snapshot from A.



Continuous MapReduce 
Jobs

• Run MapReduce in real time 

• Accepting Data as it becomes available and 
analyze it immediately. 



Key Idea

• Add a optional “flush” operation to push data from 
map tasks to reduce tasks, when reduce task can 
not accept the data, the mapper will store it locally 
and send it later. 

• User defined reduce task will periodically invoked 
on the output of the map available. 



Fault Tolerance 

• Problem here: map tasks can not remember the 
entire history to fast recover from reduce failure.  

• They assume that reducer only depends on a suffix 
of the map history.  

• Use ring buffer for map-side spill files.



Evaluation 
where’s the time consumption

• Map task two phases: map (most), sort 

• Reduce task three phases: shuffle (75%), sort & 
commit (25%).



What they observe

• When reduce task is fast, map is slow, then they 
can improve over block MapReduce. 

• When reduce task is bottleneck, they have no 
improvement.



When reduce task is fast



When reduce task is slow



Strength

• Preserve original MapReduce Architecture 

• Allow pipeline/online aggregation



Weakness

• Snapshot accuracy is hard to evaluate 

• Perform badly when reduce task is slow 

• Only support fixed number of map/reduce tasks 

• Failure recovery requires remembering entire 
history in worse case


