Kahawai: High-Quality Mobile
Gaming Using GPU Offload

Authors: Eduardo Cuervo, Alec Wolman, Landon P. Cox,
Kiron Lebeck, Ali Razeen, Stefan Saroiu and Madanlal
Musuvathi

Conference: MobiSys 2015

Motivation

Mobile devices (tablets, smartphones and laptops) have less
powerful GPUs than gaming consoles and high-end desktops
because of power consumption limitations

Mobile devices will have less powerful GPUs in the near
future because of limited improvements in battery
technology and form factor limitations

Problem: Mobile devices cannot produce game visuals of the
same quality as gaming consoles and high-end desktops
because they have less powerful GPUs

Solution: Offload GPU computation from mobile devices to
servers to obtain high quality game visuals

Thin Client

e Thin client approach is currently used in industry (Playstation
Now and Nvidia Shield)

* Key idea: Server (with powerful GPU) executes the game and
renders the game visuals and audio, and sends the rendered

output to the mobile device

* Thin client has two weaknesses: transmitting high quality
visuals requires high bandwidth and offline gaming is not

supported

Collaborative Rendering

Paper proposes collaborative rendering to decrease required
bandwidth for cloud gaming and support offline gaming

Core idea 1: Less bandwidth is required if server and mobile
device work together to render the game visuals

Core idea 2: Method of collaboration is mobile device
produces low-fidelity (low quality or less frames) visuals and
works with server to obtain high-fidelity (high quality or
more frames) visuals

Two techniques for collaborative rendering: delta encoding
and client-side |-frame rendering

Requires that two concurrently executing game instances
produce the same visuals

Delta Encoding

Key idea: High and low quality frames of most games share
the same visual structure (majority of visual information)

Typically, the compressed difference between high and low
quality frames will contain significantly fewer bits than the

compressed high quality frame

Requires a way to generate high detail and low detail
versions of frames (supported by many desktop PC games)

Server concurrently renders high quality and low quality
frames with the low quality frames matching the frames
rendered by the mobile device

Delta Encoding

 Observe that both low and high quality frames share the

same visual structure
 The only difference is that the high quality frame contains

fine-grained details

Low quality frame High quality frame

Delta Encoding

Step 1: Mobile device sends input to server

Step 2: Mobile device renders low quality frames while
server renders both high quality and low quality frames

Step 3: For each visual, the server computes a delta frame.
The delta frame is the pixel-by-pixel difference between the
high quality and low quality frames

Step 4: Server compresses (i.e. encodes) the delta frames
and sends them to mobile device

Step 5: Mobile device decompresses (i.e. decodes) the delta
frames and applies them to the corresponding low quality
frames to obtain high quality frames

Client-side I-frame Rendering

Key idea: Take advantage of the way video is structured to
reduce data sent by server to mobile device

Mobile device renders high quality frames at low rate while
server renders high quality frames at high rate

Requires that mobile device be able to render high quality
frames at fast enough rate (at least 6 frames per second)

Requires access to game engine source code

In particular, need access to game engine source code to
prevent mobile device from rendering P-frames

Client-side I-frame Rendering

Compressed video is composed of three types of frames: |-
frames, P-frames and B-frames

I-frames are large in size and self-contained. An I-frame
contains all the information needed to display the visual

P-frames are relatively small in size and reference prior
frames. A P-frame and all the other frames it references are
needed to display the visual

lgnore B-frames (not needed to understand technique)

Client-side I-frame Rendering

Step 1: Mobile device sends input to server

Step 2: Mobile device renders only I-frames while server
renders both I-frames and P-frames in the video. Only high
quality frames are rendered

Step 3: Mobile device encodes |-frames

Step 4: Server compresses (i.e. encodes) the video, replaces
the I-frames with empty frames and sends the video to
mobile device

Step 5: Mobile device merges its encoded I-frames with the
video received and then decompresses (i.e. decodes) the
result to obtain high quality frames

Input Handling

The mobile device time-stamps inputs with the appropriate
frame numbers before sending them to server

The time-stamping and asynchronous input processing
ensure that the game instances running on the mobile
device and the server remain in sync

Pipelining and adaptive clocking are used to reduce input-to-
output latency

Pipelining separates the major tasks in Kahawai into 7
asynchronous stages that are run in separate threads and
each stage depends on the output of the previous stage

Adaptive clocking ensures inputs are sampled at a decent
rate to avoid significant decreases in pipeline throughput
and significant increases in input-to-output latency

Experimental Evaluation Part 1

Question 1: How does collaborative rendering affect the
gaming experience of users compared with thin client?

Experiment: User study with 50 people

The users play a portion of a level on Doom 3 and complete
a post-study survey that assesses their game-play experience

Users are asked how strongly they agree with the
statements ‘the game looked good’ and ‘the game ran
smoothly’ on a 1-7 scale

1 represents strong disagreement
7 represents strong agreement

User Study Results and Analysis

Post-study: looked good

SLEELL:

* Perception of visual quality is
roughly the same for both
collaborative rendering and
thin client

* Perception of game
smoothness is roughly the
same for both collaborative Post-study: ran smoothly
rendering and thin client s T o T

* User experience is roughly : T l
the same for both

collaborative rendering and
thin client

Delta low Delta high Iframe low Iframe high Thick Thinlow Thin high

Delta low Delta high Iframe low Iframe high Thick Thin low Thin high

Experimental Evaluation Part 2

Question 2: For each of Kahawai’s collaborative rendering
techniques, how do the bandwidth requirements and visual
quality compare to those of thin client?

Experiment: Bitrate versus quality

For 3 different scenes in Doom 3, vary the compression
factor and plot the bitrate (i.e. bandwidth) used to transmit
the frames against the quality of the frames generated

Compare delta-encoding, client-side I-frame rendering and
thin client approaches

Image quality is measured using SSIM, which shows how
similar a frame is to the highest quality version of that frame

Horizontal axes in graphs show SSIM (dB) logarithmic scale

Bitrate versus Quality Results

Bitrate (Kbps)

Bitrate vs Quality (Demol)

® Delta
e Thin-client
e |-Frame

5

Bitrate vs Quality (Light room)

e Delta

e Thin-client

® |-Frame

5

Qualiy (SSIM dB)

2

Qualiy (SSIM dB)

Bitrate vs Quality (Cyberdemon)

‘
.
.
I
"
-
1
I

e Delta

e Thin-client
® |-Frame

c""

‘., 4 i’ -
n:'.'..'.!‘. o

5

10
Qualiy (SSIM dB)

Bitrate versus Quality Analysis

* Delta encoding provides better quality visuals than thin
client with low bandwidth (less than 0.6 Mbps)

* Thin client needs up to 6 times as much bandwidth as client-
side I-frame rendering to achieve high quality visuals (at
least 15.23 on quality scale in graphs)

Related Work

MAUI and CloneCloud perform automatic code offload from
mobile device to server

MAUI and CloneCloud focus on CPU computation offload
while Kahawai focuses on GPU computation offload

Outatime is a cloud gaming system designed to mask
network latency. The server predicts inputs, renders
speculative frames of possible outcomes, and sends them to
mobile device in advance

Kahawai substantially reduces bandwidth required for cloud
gaming at cost of moderate increase in input latency while
Outatime masks substantial network latency at cost of extra
bandwidth

Future Work

 Combine both delta encoding and client-side I-frame

rendering into one collaborative rendering technique to get
more bandwidth savings

* Integrate Outatime and Kahawai into low-bandwidth GPU
offload system that is resilient against high network latency

Strengths

When the mobile device is connected to the server,
collaborative rendering produces high quality game visuals
using significantly less bandwidth than thin client

Mobile devices can run games offline but with low quality
NIELS

To enable Kahawai for all games built on top of a particular
game engine, only minimal changes need to be made to the
game engine source code

The use of pipelining and adaptive clocking to reduce input-
to-output latency

Weaknesses

Kahawai does not work smoothly enough with high network
latency

Delta encoding can require more bandwidth than thin client
when more objects are present in high quality scene
versions and/or low quality scene versions contain more
randomness than high quality scene versions

Two concurrently executing game instances must produce
the same graphical output

Without game engine source code, Kahawai may not be able
to be used in games built on top of this game engine (in
particular, cannot use client-side I-frame rendering)

