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Problem Statement
- Many industries have use cases where they would like to execute a query across 

data which is distributed over a large geographical area

- The common approach to doing this involves copying ALL of the relevant data to 

a single data center, or to spread the work ‘evenly’ across datacenters 

- but these methods can be time inefficient, or have high query response time when datacenter 

qualities are variable

- This is particularly undesirable when the results of these queries are used directly by operators 

(analysts), or fuel interactive services
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Core Ideas
- Can we instead process the data in a globally distributed way, assigning the heavy 

lifting of analytics queries intelligently?

- Can we shuffle data around preemptively so that future queries are faster?
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Technical Design - Task Placement
- Assuming the model above (and that tasks are infinitesimally divisible), you can 

find an optimal solution for a single reduce task by the following a linear program

- In practice, they relax the divisibility assumption above by using a Mixed Integer 

Program instead (which takes a bit more time)

- They also approximate the solution for multiple linked tasks (DAGs) greedily
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Technical Design - Data Placement
- The conceptual lesson from the last example is that data shouldn’t reside on 

‘bottleneck’ sites when possible

- Luckily, the LP is efficient, and it tells us which sites are bottleneck nodes

- So, although we can’t find an exact solution, we can take a greedy approach by 

considering data movements in small increments - frequently running the LP to 

see the effects on the eventual query response time
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Technical Design - Multiple Datasets
- None of this is useful in real data centers unless you’re able to prioritize which 

datasets to optimize at a given point in time

- Fortunately, we can do this by iterating over all datasets, and consolidating the 

query frequency of each query for a particular dataset



Technical Design - Other Features
- Can impose a tunable WAN-usage Budget by first running a WAN-optimized 

strategy, and then only moving data if it fits under some multiplicative factor of 

the usage of that strategy (notably, 1.3 factor yields 90% of the performance gains)

- Using query/data contention they only move a data packet if it won’t upset 

currently running queries too much (also estimated using the same greedy 

methods)



Implementation
- Written as a modified version of Spark (~MapReduce successor) using Hadoop 

Distributed File System

- Measure bandwidth of each site and intermediate data size by empirical estimation from data 

throughput and task flows
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Evaluations
- 8 Globally distributed EC2 instances 

- in Tokyo,  Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California

- also use 30 instances within one region with tuned bandwidth distributions

- Run query workload benchmarks from 4 different applications

- Conviva Video Analytics - queries from a video delivery and monitoring company

- Microsoft Bing Edge Distribution - Edge server streaming queries

- TPC-DS Benchmark - Decision support queries modelled after Amazon

- AMPLab Big-Data - combination of Hive and Spark queries using the same schema throughout

- Also perform a trace-driven simulation of Facebook’s Hadoop cluster

- Compare against two baseline strategies:

- leaving data ‘in-place’ & centralization strategy (with very high in-DC bandwidth)

- both use Spark’s standard scheduling routines
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Strengths
- Provide significant performance gains in a zone which was seemingly poorly 

optimized beforehand

- Avoids blindly optimizing one metric, and allows the user to tune their 

preferences (WAN knob)

- Very comprehensive and relevant evaluations, which effectively probe how the 

system works

- Intuition models were effective ways to communicate their ideas



Places for Improvement
- Greedy strategy seems to have clear negative effects on their current performance 

in some places

- Haven’t properly modelled tasks which take a significant amount of time

- Assumes very large storage and compute capacities, which limit their relevant 

applications
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