
Low-Latency Geo-Distributed
Data Analytics

(Iridium)
Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,

Srikanth Kandula, Aditya Akella, Paramvir Bahl, Ion Stoica

SIGCOMM ‘15 (Aug 17-21)

Nicholas Turner

Problem Statement
- Many industries have use cases where they would like to execute a query across

data which is distributed over a large geographical area

Problem Statement
- Many industries have use cases where they would like to execute a query across

data which is distributed over a large geographical area

- some examples include

- determining global properties of a service across users - median response time

- whole cluster system log queries

Problem Statement
- Many industries have use cases where they would like to execute a query across

data which is distributed over a large geographical area

- The common approach to doing this involves copying ALL of the relevant data to

a single data center, or to spread the work ‘evenly’ across datacenters

Problem Statement
- Many industries have use cases where they would like to execute a query across

data which is distributed over a large geographical area

- The common approach to doing this involves copying ALL of the relevant data to

a single data center, or to spread the work ‘evenly’ across datacenters

- but these methods can be time inefficient, or have high query response time when datacenter

qualities are variable

- This is particularly undesirable when the results of these queries are used directly by operators

(analysts), or fuel interactive services

Core Ideas
- Can we instead process the data in a globally distributed way, assigning the heavy

lifting of analytics queries intelligently?

Core Ideas
- Can we instead process the data in a globally distributed way, assigning the heavy

lifting of analytics queries intelligently?

- Can we shuffle data around preemptively so that future queries are faster?

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks between site and core)

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

Congestion-free

1 2

43

U

1

U

3

U

4

U

2

D

1

D

3

D

2

D

4

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

- IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to

communication latencies

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

- IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to

communication latencies

- Computation is split across three sites with the following characteristics

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

- IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to

communication latencies

- Computation is split across three sites with the following characteristics

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

- IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to

communication latencies

- Computation is split across three sites with the following characteristics

- Sites shuffle data in an ‘all-to-all’ fashion - always sending a percentage of their data proportional to

the number of reduce tasks on the destination site

Further Illustration - Model Queries
- Consider a MapReduce query where

- nodes communicate via a congestion-free core (communication bottlenecks lie between site and

core)

- IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to

communication latencies

- Computation is split across three sites with the following characteristics

- Sites shuffle data in an ‘all-to-all’ fashion - always sending a percentage of their data proportional to

the number of reduce tasks on the destination site

Technical Design - Task Placement
- Assuming the model above (and that tasks are infinitesimally divisible), you can

find an optimal solution for a single reduce task by the following a linear program

Technical Design - Task Placement
- Assuming the model above (and that tasks are infinitesimally divisible), you can

find an optimal solution for a single reduce task by the following a linear program

- In practice, they relax the divisibility assumption above by using a Mixed Integer

Program instead (which takes a bit more time)

Technical Design - Task Placement
- Assuming the model above (and that tasks are infinitesimally divisible), you can

find an optimal solution for a single reduce task by the following a linear program

- In practice, they relax the divisibility assumption above by using a Mixed Integer

Program instead (which takes a bit more time)

- They also approximate the solution for multiple linked tasks (DAGs) greedily

Technical Design - Data Placement
- The terms in the last equations depended heavily upon S

i

 (which in turn depend

on I

i

), if we knew which queries were coming, we could optimize these terms to

find better solutions (though the theoretical formulation isn’t tractable here).

Technical Design - Data Placement
- The terms in the last equations depended heavily upon S

i

, if we knew which

queries were coming, we could optimize these terms to find better solutions

(though the theoretical formulation isn’t tractable here).

Technical Design - Data Placement
- The conceptual lesson from the last example is that data shouldn’t reside on

‘bottleneck’ sites when possible

Technical Design - Data Placement
- The conceptual lesson from the last example is that data shouldn’t reside on

‘bottleneck’ sites when possible

- Luckily, the LP is efficient, and it tells us which sites are bottleneck nodes

Technical Design - Data Placement
- The conceptual lesson from the last example is that data shouldn’t reside on

‘bottleneck’ sites when possible

- Luckily, the LP is efficient, and it tells us which sites are bottleneck nodes

- So, although we can’t find an exact solution, we can take a greedy approach by

considering data movements in small increments - frequently running the LP to

see the effects on the eventual query response time

Technical Design - Multiple Datasets
- None of this is useful in real data centers unless you’re able to prioritize which

datasets to optimize at a given point in time

Technical Design - Multiple Datasets
- None of this is useful in real data centers unless you’re able to prioritize which

datasets to optimize at a given point in time

- Fortunately, we can do this by iterating over all datasets, and consolidating the

query frequency of each query for a particular dataset

Technical Design - Other Features
- Can impose a tunable WAN-usage Budget by first running a WAN-optimized

strategy, and then only moving data if it fits under some multiplicative factor of

the usage of that strategy (notably, 1.3 factor yields 90% of the performance gains)

- Using query/data contention they only move a data packet if it won’t upset

currently running queries too much (also estimated using the same greedy

methods)

Implementation
- Written as a modified version of Spark (~MapReduce successor) using Hadoop

Distributed File System

- Measure bandwidth of each site and intermediate data size by empirical estimation from data

throughput and task flows

Evaluations
- 8 Globally distributed EC2 instances

- in Tokyo, Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California

- also use 30 instances within one region with tuned bandwidth distributions

Evaluations
- 8 Globally distributed EC2 instances

- in Tokyo, Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California

- also use 30 instances within one region with tuned bandwidth distributions

- Run query workload benchmarks from 4 different applications

- Conviva Video Analytics - queries from a video delivery and monitoring company

- Microsoft Bing Edge Distribution - Edge server streaming queries

- TPC-DS Benchmark - Decision support queries modelled after Amazon

- AMPLab Big-Data - combination of Hive and Spark queries using the same schema throughout

Evaluations
- 8 Globally distributed EC2 instances

- in Tokyo, Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California

- also use 30 instances within one region with tuned bandwidth distributions

- Run query workload benchmarks from 4 different applications

- Conviva Video Analytics - queries from a video delivery and monitoring company

- Microsoft Bing Edge Distribution - Edge server streaming queries

- TPC-DS Benchmark - Decision support queries modelled after Amazon

- AMPLab Big-Data - combination of Hive and Spark queries using the same schema throughout

- Also perform a trace-driven simulation of Facebook’s Hadoop cluster

Evaluations
- 8 Globally distributed EC2 instances

- in Tokyo, Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California

- also use 30 instances within one region with tuned bandwidth distributions

- Run query workload benchmarks from 4 different applications

- Conviva Video Analytics - queries from a video delivery and monitoring company

- Microsoft Bing Edge Distribution - Edge server streaming queries

- TPC-DS Benchmark - Decision support queries modelled after Amazon

- AMPLab Big-Data - combination of Hive and Spark queries using the same schema throughout

- Also perform a trace-driven simulation of Facebook’s Hadoop cluster

- Compare against two baseline strategies:

- leaving data ‘in-place’ & centralization strategy (with very high in-DC bandwidth)

- both use Spark’s standard scheduling routines

Evaluations

Evaluations

Evaluations

Evaluations

Evaluations

Evaluations

Strengths
- Provide significant performance gains in a zone which was seemingly poorly

optimized beforehand

- Avoids blindly optimizing one metric, and allows the user to tune their

preferences (WAN knob)

- Very comprehensive and relevant evaluations, which effectively probe how the

system works

- Intuition models were effective ways to communicate their ideas

Places for Improvement
- Greedy strategy seems to have clear negative effects on their current performance

in some places

- Haven’t properly modelled tasks which take a significant amount of time

- Assumes very large storage and compute capacities, which limit their relevant

applications

Low-Latency Geo-Distributed
Data Analytics

Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,

Srikanth Kandula, Aditya Akella, Paramvir Bahl, Ion Stoica

SIGCOMM ‘15 (Aug 17-21)

Nicholas Turner

