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- Many industries have use cases where they would like to execute a query across
data which is distributed over a large geographical area

- The common approach to doing this involves copying ALL of the relevant data to
a single data center, or to spread the work ‘evenly’ across datacenters

- but these methods can be time inefficient, or have high query response time when datacenter
qualities are variable

- This is particularly undesirable when the results of these queries are used directly by operators

(analysts), or fuel interactive services
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Core Ideas

- Can we instead process the data in a globally distributed way, assigning the heavy
lifting of analytics queries intelligently?

- Can we shuffle data around preemptively so that future queries are faster?
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Further lllustration - Model Queries

- Consider a MapReduce query where

Input Data (MB), /
Intermediate Data (MB), S
Uplink (MB/s), U
Downlink (MB/s), D

nodes communicate via a congestion-free core. (communication bottlenecks lie between site and
core)

IO and CPU tasks take 0 time to execute (or at least that their time cost is negligible compared to
communication latencies

Computation is split across three sites with the following characteristics

Sites shuffle data in an ‘all-to-all’ fashion - always sending a percentage of their data proportional to
the number of reduce tasks on the destination site
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Technical Design - Task Placement

- Assuming the model above (and that tasks are infinitesimally divisible), you can
find an optimal solution for a single reduce task by the following a linear program

- In practice, they relax the divisibility assumption above by using a Mixed Integer
Program instead (which takes a bit more time)

- They also approximate the solution for multiple linked tasks (DAGs) greedily

min 2
st. Vi:r; >0

>iri=1

Vi: T/ (r) <z, TP(r) <z




Technical Design - Data Placement

- The terms in the last equations depended heavily upon S. (which in turn depend
on L), if we knew which queries were coming, we could optimize these terms to
find better solutions (though the theoretical formulation isn’t tractable here).




Technical Design - Data Placement

- The terms in the last equations depended heavily upon S, if we knew which
queries were coming, we could optimize these terms to find better solutions
(though the theoretical formulation isn’t tractable here).

Input Data (MB), /
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Technical Design - Data Placement

- The conceptual lesson from the last example is that data shouldn’t reside on
‘bottleneck’ sites when possible

- Luckily, the LP is efficient, and it tells us which sites are bottleneck nodes

- So, although we can’t find an exact solution, we can take a greedy approach by
considering data movements in small increments - frequently running the LP to
see the effects on the eventual query response time
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Technical Design - Multiple Datasets

- None of this is useful in real data centers unless you’re able to prioritize which
datasets to optimize at a given point in time

- Fortunately, we can do this by iterating over all datasets, and consolidating the
query frequency of each query for a particular dataset

: procedure ALLOCATEMOVES(List(Dataset) D)
for each Dataset d in D do
Move d.m < FINDMoOVE(d)
lag < > cd.Queries 9128 / d.Queries.Count
d.value + >

ged.Queries A-m-timeReduction[q | /

lag
d.value
d.m.cost

for each Dataset d in D.SortedByDesc(d.score) do
if d.m.bottleneck.canMove() then
execute d.m

d.score +




Technical Design - Other Features

-

Can impose a tunable WAN-usage Budget by first running a WAN-optimized
strategy, and then only moving data if it fits under some multiplicative factor of
the usage of that strategy (notably, 1.3 factor yields 90% of the performance gains)

Using guery/data contention they only move a data packet if it won’t upset

currently running queries too much (also estimated using the same greedy
methods)



Implementation

- Written as a modified version of Spark (~MapReduce successor) using Hadoop
Distributed File System

- Measure bandwidth of each site and intermediate data size by empirical estimation from data

throughput and task flows
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8 Globally distributed EC2 instances
- in Tokyo, Singapore, Sydney, Frankfurt, Ireland, Sao Paulo, Virginia, and California
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- also use 30 instances within one region with tuned bandwidth distributions

Run query workload benchmarks from 4 different applications
- Conviva Video Analytics - queries from a video delivery and monitoring company
- Microsoft Bing Edge Distribution - Edge server streaming queries
- TPC-DS Benchmark - Decision support queries modelled after Amazon
- AMPLab Big-Data - combination of Hive and Spark queries using the same schema throughout

Also perform a trace-driven simulation of Facebook’s Hadoop cluster
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Compare against two baseline strategies:
- leaving data ‘in-place’ & centralization strategy (with very high in-DC bandwidth)
- both use Spark’s standard scheduling routines
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Iridium vs. Centralized Iridium vs. Centralized
® [ridium vs. In-place u [ridium vs. In-place

5x-14X gx-Ox 3x-10x 4x—19x

111

Convwa Bing TPC- Big-
Edge DS Data

(a) Inter-Region (b) 30 sites

Figure 5: EC2 Results across eight worldwide regions
(a): Tokyo, Singapore, Sydney, Frankfurt, Ireland,
Sao Paulo, Virginia (US) and California (US). The

figure on the right (b) is on a larger 30-site setup.
Iridium is 3X — 19x better compared to the two base-

lines.
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Evaluations

Iridium vs. Iridium vs.
In-place | Centralized
Core 3%
Core + Query Lag 467
Core + Query Lag
4+ Contention 59% 74%

Core + Contention 53%

Table 2: Progression of Iridium’s gains as additional
features of considering query lag and contention be-
tween query/data movements are added to the basic

heuristic. (Facebook workload)
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Figure 6: CDF of Iridium’s gains with the Facebook
workload. We also compare our two techniques—
task placement and data placement—standalone.
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Figure 7: Iridium’s improvements (and % queries),
bucketed by various query characteristics: (a) inter-
mediate/input data ratio, (b) dataset access count,

(c) query size (# tasks), and (d) cross-site skew in
intermediate data.




Evaluations

Lag Metric Vs. In-place | Vs. Centralized
Iridium (Avg. '
Iridium (Median
Iridium (Earliest
Iridium (Latest

Table 3: Effectiveness of estimating query lag. Irid-
ium’s approach of using the average lag outperforms
other options and crucially, has gains of ~ 90% of an
oracle that has full knowledge about query arrivals.

class Move
double cost
(QueryID, double) timeReduction
Site bottleneck
: procedure ALLOCATEMOVES(List(Dataset) D)
for each Dataset d in D do
Move d.m + FINDMOVE(d)
lag < >~ c 4 Queries 9-1ag / d.Queries.Count
d.value « d.m.timeReduction|q | /

ged.Queries

lag

d.value

d.score « d.m.cost

for each Dataset d in D.SortedByDesc(d.score) do
if d.m.bottleneck.canMove() then
execute d.m
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Figure 8: WAN Bandwidth Usage knob, B. MinBW
is the scheme that optimizes for WAN bandwidth
usage. Even with same WAN usage as MinBW
(B = 1), Iridium’s gains in query response time are
Elgmﬁcantly higher. MinBW slows down queries
against the in-place baseline.




Strengths

- Provide significant performance gains in a zone which was seemingly poorly
optimized beforehand
- Avoids blindly optimizing one metric, and allows the user to tune their

preferences (WAN knob)

- Very comprehensive and relevant evaluations, which effectively probe how the
system works
- Intuition models were effective ways to communicate their ideas



Places for Improvement

- Greedy strategy seems to have clear negative effects on their current performance
in some places

- Haven’t properly modelled tasks which take a significant amount of time

- Assumes very large storage and compute capacities, which limit their relevant
applications
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