
Global Analytics in the Face
of Bandwidth

and Regulatory Constraints
Ashish Vulimiri, Carlo Curino, Brighten Godfrey,

Thomas Jungblut, Jitu Padhye, George Varghese
NSDI ’15

Presenter: Sarthak Grover

Motivation

● Current centralized approach
inadequate
○ Scarce, expensive cross-DC

bandwidth
○ Incompatible with sovereignty

concerns

SQL analytics across geo-distributed
data to extract insights

~ 10 TB/day
2

Problem Statement:
Geo-Distributed SQL Analysis

● Given:
○ Data born distributed across DCs

● Goal: support SQL analytics on this data
○ Minimize bandwidth cost
○ Handle:

■ fault-tolerance
■ sovereignty constraints

3

Example
Data Collected:

● ClickLog(sourceIP,destURL,visitDate,adRevenue,...)
● PageInfo(pageURL,pageSize,pageRank,...)

Q: SELECT sourceIP, sum(adRevenue), avg(pageRank)

FROM ClickLog cl JOIN PageInfo pi

ON cl.destURL = pi.pageURL

WHERE pi.pageCategory = ’Entertainment’

GROUP BY sourceIP

HAVING sum(adRevenue) >= 100
4

Example

● Replicate smaller
table

● Broadcast joins
● Schedule q to

minimize BW

5

Approach Geode Command
Layer

ILP
Calcite

Workload
Optimizer

6

Geode Command Layer

● Logically centralized view over data partitioned and/or
replicated across Hive instances in multiple data centers.

● Each table contains partition column
● Supports joins and nested queries

7

Design Goal: BW optimization

Given an SQL query:

● Choose join order and strategies
● Schedule tasks

Optimizations:

1. Minimize Cross-DC bandwidth (S3)
2. Plan SQL query and schedule tasks given sovereignty,

fault tolerance constraints to minimize transfer costs (S4)
3. Extended optimization for specific functions (S5)

8

Minimize Cross-DC Bandwidth

● Geode is meant for repeated queries over a changing
database

● Each DC
○ Cache subquery intermediate results
○ Transfer deltas

9

Optimizations

1. Minimize Cross-DC bandwidth
2. Plan SQL query and schedule tasks given

sovereignty, fault tolerance constraints to minimize
transfer costs

3. Extended optimization for specific functions

10

Workload Optimizer

● Maximize performance
● Jointly optimize:

○ Query plan
○ Site selection
○ Data replication

● Steps:
○ Find the best centralized plan (Calcite++)
○ Decompose centralized to distributed using heuristics

■ Pseudo-distributed execution
■ ILP

11

Pseudo-distributed Execution

● Calcite++ gives optimum JOIN strategy for tables
● Assume centralized execution, form partitions, measure

data transfer for different strategies
● Only execute whenever re-evaluation is needed (eg:

initialization, new DC added, …)

● Centralized
bootstrapping

● SELECT … WHERE
country=’US’

● Measure transfer costs
12

Site Selection and Data Replication

● Given:
○ Logical plan of tasks for each query (DAG)
○ Data transfer costs along each edge
○ Sovereignty and recovery requirements
○ Update rate

● Minimize total bandwidth costs
● Solve:

○ Site selection: which data centers should tasks run on
and which copy of data should be accessible

○ Data replication: which data centers each base data
partition should be replicated to (for performance
and/or fault tolerance) 13

ILP vs Greedy Heuristic

● ILP is highly optimized but may be unscalable and slow
● Isolate both problems

○ Site selection
■ Natural greedy task placement
■ Assign tasks to lowest cost data centers where

possible
○ Data replication

■ Independent and solvable ILP
■ Check if replicating would further reduce cost

14

Evaluation: ILP vs Greedy

● Synthetic query patterns
● ILP scalable to 10 DCs, Greedy scalable to 100
● Real benchmarks: 98% were same

16%

8x

15

Large Scale Evaluation

x-axis: update to database between subsequent queries; y-axis: transfer costs
evaluate: centralized, distributed, distributed+caching

330x360x257x

16

Evaluation: TCP-CH (from slides)

● centralized better than distributed for low churn
● cache is less effective for v. high churn

17

Strengths

● Works on relational databases (SQL-like model)
● Extensible to user defined optimizations
● Intermediate caching might result in unexpected gains

during cross-DC task assignments
● Profiling latency overhead turns out to be small (<20%)

18

Weaknesses

● Solves only for relational data model - not extendible to
MapReduce type

● Very simplistic uniform bandwidth cost model is assumed
● Only optimizes for bandwidth constraints, not latency
● Relaxed eventual consistency model
● No attempt to preserve privacy as arbitrary queries are

allowed as long as sovereignty constraints regarding base
data are met

19

Thanks!

20

Design: Key Characteristics

1. Support full relational model
2. No control over data partitioning
- Dictated by external factors, typically end user latency

3. Cross-DC bandwidth is scarcest resource by far
- CPU, storage etc within data centers are relatively cheap

4. Unique constraints
- Heterogeneous bandwidth costs/capacities
- Sovereignty

5. Bulk of load comes from ~stable recurring workload
- Consistent with production logs

21

