Global Analytics in the Face
of Bandwidth
and Regulatory Constraints

Presenter: Sarthak Grover



Motivation

e Current centralized approach
iInadequate
o Scarce, expensive cross-DC
bandwidth

o Incompatible with sovereignty
concerns

SQL analytics across geo-distributed
data to extract insights

~ 10 TB/day



Problem Statement:
Geo-Distributed SQL Analysis

e Given:
o Data born distributed across DCs
e Goal: support SQL analytics on this data
o Minimize bandwidth cost
o Handle:
m fault-tolerance
m sovereignty constraints



Example

Data Collected:

e ClickLog(sourcelP,destURL,visitDate,adRevenue,...)
e Pagelnfo(pageURL,pageSize,pageRank,...)

Q: SELECT sourcelP, sum(adRevenue), avg(pageRank)
FROM ClickLog cl JOIN Pagelnfo pi
ON cl.destURL = pi.pageURL
WHERE pi.pageCategory = 'Entertainment’
GROUP BY sourcelP

HAVING sum(adRevenue) >= 100



SELECT sourcslF . e Replicate smaller

FROM ClickLog o

JOIN Pagelnio pi ON ... table
' e Broadcast joins

SELECT pageURL, . T e Schedule g to
FROM Pagalnla 3 o )
WHEE;,EH@GW ELECT sourcelP, .. minimize BW
Attty FROM ClidiLog o
JOIN Pagsinio pi ON ...
HAVING
sum|ad Revenue)
=100

Figure 2: DAG corresponding to Q,



ApprOaCh Geode Command

Layer
ILP Workload
o Calcite | Optimizer

Coordinator

Reporting Results

pipeline

[Hive]

Local 1 ETL

Single-DC SQL stack

End-user facing DB
(handles OLTP)




Geode Command Layer

e Logically centralized view over data partitioned and/or
replicated across Hive instances in multiple data centers.

e Each table contains partition column

e Supports joins and nested queries



Design Goal: BW optimization

Given an SQL query:

e Choose join order and strategies
e Schedule tasks

Optimizations:

1. Minimize Cross-DC bandwidth (S3)

2. Plan SQL query and schedule tasks given sovereignty,
fault tolerance constraints to minimize transfer costs (S4)

3. Extended optimization for specific functions (S95)



Minimize Cross-DC Bandwidth

e (Geode is meant for repeated queries over a changing
database

e Each DC
o Cache subquery intermediate results
o Transfer deltas




Optimizations

1. Minimize Cross-DC bandwidth
2. Plan SQL query and schedule tasks given
sovereignty, fault tolerance constraints to minimize

transfer costs
3. Extended optimization for specific functions

10



Workload Optimizer

e Maximize performance
e Jointly optimize:
o Query plan
o Site selection
o Data replication
e Steps:
o Find the best centralized plan (Calcite++)
o Decompose centralized to distributed using heuristics
m Pseudo-distributed execution
m ILP

11



Pseudo-distributed Execution

e Calcite++ gives optimum JOIN strategy for tables

e Assume centralized execution, form partitions, measure
data transfer for different strategies

e Only execute whenever re-evaluation is needed (eg:
initialization, new DC added, ... )

inject filter

{%’,. 7\ ~, WHERE country = “Us” @ Centralized

bootstrapping

e SELECT ... WHERE
country="US’

e Measure transfer costs

12




Site Selection and Data Replication

e Given:
o Logical plan of tasks for each query (DAG)
o Data transfer costs along each edge
o Sovereignty and recovery requirements
o Update rate
e Minimize total bandwidth costs
e Solve:
o Site selection: which data centers should tasks run on
and which copy of data should be accessible
o Data replication: which data centers each base data
partition should be replicated to (for performance
and/or fault tolerance)



ILP vs Greedy Heuristic

e |LP is highly optimized but may be unscalable and slow
e |[solate both problems
o Site selection
m Natural greedy task placement
m Assign tasks to lowest cost data centers where
possible
o Data replication
m Independent and solvable ILP
m Check if replicating would further reduce cost

14



Evaluation: ILP vs Greedy

5 |

" 1§ R
_E i B |
a_g T 6
Ry |
= J; o ;
W ;..l/_ |
i I |
1 1 \ __'|

\

— 177 100 10000 [le+06 le+08
16%

Ratio: (greedy cost) / (ILP cost)
(a) Bandwidth cost ratio on 10k randomly generated queries

e Synthetic query patterns
e |LP scalable to 10 DCs, Greedy scalable to 100
e Real benchmarks: 98% were same

15



Large Scale Evaluation
~ 360x | - 330x

| 0 ae i Ll £ LT B
1] “Iﬁ_v 'Emlrdmd—‘l-— o wied Cn'uimd—‘l'—
o 5 [ D00 Digr baat o cching, = = 5 ; (000 Digribamad: red caching = =48-
3 E [ O Rt wlile coclley + ..... [BEERNIEE : i | [Dsribmed with caching —W— " | |
2 a 1o | i ; il T | PISERTNSEN| AN ST SRR T
& R B
a B B I B I
S A O m fr [ =
=] T 0| T 0.l
" EH] 0.01
ol | 14] (0D (0D D00 0l | [4] [0 OO0 (0D
GB (raw. uncompressed) GE (raw. uncompressed) GB (raw, uncompressed)
Size of updates to DB since b analytes run Size of updates va DB since lst analytes run Size af updates vo DB since kbt analyties run
(a) Microsoft production workload (b) TPC-CH (c) BigBench
10 i) : | D
. o Cermalzed —f—
53 0 b 3 % T 1000 Pemibumdt wih mching -0
2 E' ! & § g E‘ |0 !
28 - 23 I
O = 0l O m O m 0
Q2 ) a

0. | ] | Gely ol I 10 100 1000 | 0000 Q.1 | L] 10l 1000 | O
GEB (raw, uncam pressed)

GB (raw. uncompressed)
Size of updates to DB since last analytics run

GB [raw., uncoampressed)
Size of updates 1o DB since bar analytes run

Size of updates ta DB since st analytics run
(d) Berkeley big-data (e) YCSB-aggr (f) YCSB-getall
Figure 8: End-to-end evaluation of all six workloads
x-axis: update to database between subsequent queries; y-axis: transfer costs

evaluate: centralized, distributed, distributed+caching 0



Evaluation: TCP-CH (from slides)

10000
1000 E
100

o] —— - ; . _
|

: 0.1
0:0)

Centralized =————f—
Distributed: no caching ==<0G-=- - :
istributed: with caching ===~ -~

PRI ]
. "

Data transfer
GB (compressed)

L]
1 .. I
L1 uauaul 1 I-lJIIlJ 1 JIIII'Il 1 III'.IIJJ 1 lIIIIIIl
.

Od...... .= 10 100 1000 10000

GB (raw, uncompressed)
Size of updates to DB since last analytics run

e centralized better than distributed for low churn
e cache is less effective for v. high churn

17



Strengths

e \Works on relational databases (SQL-like model)

e Extensible to user defined optimizations

e [ntermediate caching might result in unexpected gains
during cross-DC task assignments

e Profiling latency overhead turns out to be small (<20%)

18



Weaknesses

Solves only for relational data model - not extendible to
MapReduce type

Very simplistic uniform bandwidth cost model is assumed
Only optimizes for bandwidth constraints, not latency
Relaxed eventual consistency model

No attempt to preserve privacy as arbitrary queries are
allowed as long as sovereignty constraints regarding base
data are met

19



Thanks!



Design: Key Characteristics

1. Support full relational model
2. No control over data partitioning
- Dictated by external factors, typically end user latency
3. Cross-DC bandwidth is scarcest resource by far
- CPU, storage etc within data centers are relatively cheap
4. Unique constraints
- Heterogeneous bandwidth costs/capacities
- Sovereignty
5. Bulk of load comes from ~stable recurring workload
- Consistent with production logs

21



