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Motivation

e Current centralized approach
iInadequate
o Scarce, expensive cross-DC
bandwidth

o Incompatible with sovereignty
concerns

SQL analytics across geo-distributed
data to extract insights

~ 10 TB/day



Problem Statement:
Geo-Distributed SQL Analysis

e Given:
o Data born distributed across DCs
e Goal: support SQL analytics on this data
o Minimize bandwidth cost
o Handle:
m fault-tolerance
m sovereignty constraints



Example

Data Collected:

e ClickLog(sourcelP,destURL,visitDate,adRevenue,...)
e Pagelnfo(pageURL,pageSize,pageRank,...)

Q: SELECT sourcelP, sum(adRevenue), avg(pageRank)
FROM ClickLog cl JOIN Pagelnfo pi
ON cl.destURL = pi.pageURL
WHERE pi.pageCategory = 'Entertainment’
GROUP BY sourcelP

HAVING sum(adRevenue) >= 100
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Geode Command Layer

e Logically centralized view over data partitioned and/or
replicated across Hive instances in multiple data centers.

e Each table contains partition column

e Supports joins and nested queries



Design Goal: BW optimization

Given an SQL query:

e Choose join order and strategies
e Schedule tasks

Optimizations:

1. Minimize Cross-DC bandwidth (S3)

2. Plan SQL query and schedule tasks given sovereignty,
fault tolerance constraints to minimize transfer costs (S4)

3. Extended optimization for specific functions (S95)



Minimize Cross-DC Bandwidth

e (Geode is meant for repeated queries over a changing
database

e Each DC
o Cache subquery intermediate results
o Transfer deltas




Optimizations

1. Minimize Cross-DC bandwidth
2. Plan SQL query and schedule tasks given
sovereignty, fault tolerance constraints to minimize

transfer costs
3. Extended optimization for specific functions
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Workload Optimizer

e Maximize performance
e Jointly optimize:
o Query plan
o Site selection
o Data replication
e Steps:
o Find the best centralized plan (Calcite++)
o Decompose centralized to distributed using heuristics
m Pseudo-distributed execution
m ILP
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Pseudo-distributed Execution

e Calcite++ gives optimum JOIN strategy for tables

e Assume centralized execution, form partitions, measure
data transfer for different strategies

e Only execute whenever re-evaluation is needed (eg:
initialization, new DC added, ... )

inject filter

{%’,. 7\ ~, WHERE country = “Us” @ Centralized

bootstrapping

e SELECT ... WHERE
country="US’

e Measure transfer costs
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Site Selection and Data Replication

e Given:
o Logical plan of tasks for each query (DAG)
o Data transfer costs along each edge
o Sovereignty and recovery requirements
o Update rate
e Minimize total bandwidth costs
e Solve:
o Site selection: which data centers should tasks run on
and which copy of data should be accessible
o Data replication: which data centers each base data
partition should be replicated to (for performance
and/or fault tolerance)



ILP vs Greedy Heuristic

e |LP is highly optimized but may be unscalable and slow
e |[solate both problems
o Site selection
m Natural greedy task placement
m Assign tasks to lowest cost data centers where
possible
o Data replication
m Independent and solvable ILP
m Check if replicating would further reduce cost
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Evaluation: ILP vs Greedy
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e Synthetic query patterns
e |LP scalable to 10 DCs, Greedy scalable to 100
e Real benchmarks: 98% were same
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Large Scale Evaluation
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Evaluation: TCP-CH (from slides)
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e centralized better than distributed for low churn
e cache is less effective for v. high churn
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Strengths

e \Works on relational databases (SQL-like model)

e Extensible to user defined optimizations

e [ntermediate caching might result in unexpected gains
during cross-DC task assignments

e Profiling latency overhead turns out to be small (<20%)
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Weaknesses

Solves only for relational data model - not extendible to
MapReduce type

Very simplistic uniform bandwidth cost model is assumed
Only optimizes for bandwidth constraints, not latency
Relaxed eventual consistency model

No attempt to preserve privacy as arbitrary queries are
allowed as long as sovereignty constraints regarding base
data are met
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Thanks!



Design: Key Characteristics

1. Support full relational model
2. No control over data partitioning
- Dictated by external factors, typically end user latency
3. Cross-DC bandwidth is scarcest resource by far
- CPU, storage etc within data centers are relatively cheap
4. Unique constraints
- Heterogeneous bandwidth costs/capacities
- Sovereignty
5. Bulk of load comes from ~stable recurring workload
- Consistent with production logs
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