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Fulfill client (e.g. web browser) request for web content.
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To achieve high throughput web servers rely on caching
popular content.

= If the requested content is not found in the cache then the
server must fetch it from the disk.

Key idea: Overlap fetching (and other blocking actions) with
serving requests for cached content.
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Handling a request
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Read File
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—End

= Each task involves either network communication or disk 1/0
and hence can block.

= Server must interleave the tasks of many requests to improve
performance.

= Different ways to achieve interleaving of tasks.



Multi-process architecture

Accept Read Find Send Read File
Start Conn | | Request File Header | Send Data End
Accept Read Find Send Read File
Start Conn | Request | | File | | Header | Send Data End
= Each process handles the tasks of a request sequentially.
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Multiple processes are used to serve many requests
concurrently.

-+ Interleaving in this model occurs naturally, as the OS will
context switch when a process blocks.

— High overhead from multiple processes, less aggressive
optimizations.
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Multi-threaded architecture
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= Multiple threads are used to serve many requests concurrently.
+ Less overhead compared to MP.
+ Shared address space allows more aggressive optimizations.
Requires synchronization for accessing shared data.
Only feasible with OS that supports kernel threads.



Single-process event-driven architecture

ccept ptl | Read | Find |
|Conn_| Request | File l}

Event Dlspatcher

= Single process, interleaving of tasks is achieved using

non-blocking 1/0.

Issues |/O and proceeds to next request. Uses polling to
check for completion of /0.
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Minimal overhead, no context switches or synchronization
required.

Missing abstraction of sequential execution of the tasks,
control flow and reasoning become more complicated.

In practice 1/O operations may block.



Asymmetric multi-process event-driven architecture
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= Combines the previous approaches.

= A single process runs as an event loop but delegates blocking
actions to helper threads/processes.

Less overhead compared to MP/MT, performance of single
process on cached requests.

Admits the same optimizations as SPED.

Only provides |/O concurrency, not CPU concurrency.



Design comparison

Disk Blocking

= The cost of disk operations differ between the architectures

depending on whether they can cause the system to block.

= In MP, MT and AMPED only one request gets blocked, the
system can serve other requests.
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In SPED if one task blocks the whole server blocks as well.
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Design comparison

Memory Consumption

= The memory consumption of the server is important because

the server caches requests. The more memory, the more
requests it can cache.
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SPED has very low memory consumption. It doesn't require
any memory to keep track of children processes/threads.

"

MT has some additional cost due to per-request threads.

AMPED also incurs some overhead, but notice that AMPED’s
helpers are per concurrent 1/0 task and not per request.

"

= MP has the highest memory overhead due to per-request
processes.
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Design comparison

Disk Utilization
= Multiple disks may improve performance if the server can
generate multiple 1/O operations concurrently.

= SPED can only generate one 1/O operation hence it cannot
benefit from multiple disks (assumes it blocks?).

= MT, MP and AMPED can generate concurrent 1/0
operations.



Design comparison

Information Gathering

= Servers perform profiling to uncover possibilities for
optimizations.
Trivial in SPED and AMPED because of single thread.

MP and MT require communication/synchronization.
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Application-level Caching
= Caching of frequently accessed data (request responses, file
mappings, etc.)
= Single cache for AMPED and SPED.



Flash: AMPED implementation

= Implements helpers as processes for portability.

= Three types of application-level caching (filename translations,
response headers, file mappings)

= Smart trick to keep data aligned by padding response headers
accordingly.



Performance Evaluation

Comparing architectures
= Compare four servers based on Flash: Flash, Flash-MT,
Flash-MP, Flash-SPED.
Comparing web servers

= Compare Flash and two state-of-the-art web servers Apache
and Zeus.

Evaluating optimizations

= Evaluate the impact of the various optimizations implemented
in Flash.
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Evaluation environment

= Same hardware (Pentium Il, 128MB RAM).
= Two different operating systems (Solari, FreeBSD).
= 100Mbit/s ethernet connections.
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Real workload
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Evaluating in a WAN

= Previous evaluations were done in a LAN setting.
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This does not accurately model the increased connection
times due to packet losses and limited bandwidth that occur
in a WAN.

= Idea: Use persistent connections
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Optimizations impact
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Impact of optimizations

= Each optimization (or cache hit) avoids one request.

= Performance may double thanks to optimizations.
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Conclusions

= Choice of server architecture is really important for
performance.
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The evaluation proved that the choice of OS is/was important.
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Flash matches the performance of SPED architectures on
cache-bound workloads and exceeds the performance of
MP/MT architectures on disk-bound workloads.
= Flash exceeds the performance of Zeus and Apache by a
good margin.
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Only focuses on 1/O concurrency.



