Flash: An Efficient and Portable
Web Server

Presentation by Nikolaos Giannarakis

Vivek S. Pai, Peter Druschel, Willy Zwaenepoel

"

Fulfill client (e.g. web browser) request for web content.

'y

To achieve high throughput web servers rely on caching
popular content.

= If the requested content is not found in the cache then the
server must fetch it from the disk.

Key idea: Overlap fetching (and other blocking actions) with
serving requests for cached content.

m

N
N
=]

Handling a request

Find
File

Send
Header

Read File

Accept Read
Start | Send Data

Conn Request

—End

= Each task involves either network communication or disk 1/0
and hence can block.

= Server must interleave the tasks of many requests to improve
performance.

= Different ways to achieve interleaving of tasks.

Multi-process architecture

Accept Read Find Send Read File
Start Conn | | Request File Header | Send Data End
Accept Read Find Send Read File
Start Conn | Request | | File | | Header | Send Data End
= Each process handles the tasks of a request sequentially.

"

Multiple processes are used to serve many requests
concurrently.

-+ Interleaving in this model occurs naturally, as the OS will
context switch when a process blocks.

— High overhead from multiple processes, less aggressive
optimizations.

4/20

Multi-threaded architecture

—_— —_— —_— —_—— _,L —_ L
ccept | —| Read | | Find j—>|Send ead File
I |-F_on_n _ :|B¢ﬂu£st_| | File }:|Header JI Send Data

AL

= Multiple threads are used to serve many requests concurrently.
+ Less overhead compared to MP.
+ Shared address space allows more aggressive optimizations.
Requires synchronization for accessing shared data.
Only feasible with OS that supports kernel threads.

Single-process event-driven architecture

ccept ptl | Read | Find |
|Conn_| Request | File l}

Event Dlspatcher

= Single process, interleaving of tasks is achieved using

non-blocking 1/0.

Issues |/O and proceeds to next request. Uses polling to
check for completion of /0.

L]

Minimal overhead, no context switches or synchronization
required.

Missing abstraction of sequential execution of the tasks,
control flow and reasoning become more complicated.

In practice 1/O operations may block.

Asymmetric multi-process event-driven architecture

ccept ptl | Read | Find |
|Conn_| | Request I)_ | File |

Event Dispatcher |
C__z___ Q__? ______ C __?__J
Helper 1 J Helper 2 L] L] Helper k J

= Combines the previous approaches.

= A single process runs as an event loop but delegates blocking
actions to helper threads/processes.

Less overhead compared to MP/MT, performance of single
process on cached requests.

Admits the same optimizations as SPED.

Only provides |/O concurrency, not CPU concurrency.

Design comparison

Disk Blocking

= The cost of disk operations differ between the architectures

depending on whether they can cause the system to block.

= In MP, MT and AMPED only one request gets blocked, the
system can serve other requests.

m

In SPED if one task blocks the whole server blocks as well.

8/20

Design comparison

Memory Consumption

= The memory consumption of the server is important because

the server caches requests. The more memory, the more
requests it can cache.

m

SPED has very low memory consumption. It doesn't require
any memory to keep track of children processes/threads.

"

MT has some additional cost due to per-request threads.

AMPED also incurs some overhead, but notice that AMPED’s
helpers are per concurrent 1/0 task and not per request.

"

= MP has the highest memory overhead due to per-request
processes.

9/20

Design comparison

Disk Utilization
= Multiple disks may improve performance if the server can
generate multiple 1/O operations concurrently.

= SPED can only generate one 1/O operation hence it cannot
benefit from multiple disks (assumes it blocks?).

= MT, MP and AMPED can generate concurrent 1/0
operations.

Design comparison

Information Gathering

= Servers perform profiling to uncover possibilities for
optimizations.
Trivial in SPED and AMPED because of single thread.

MP and MT require communication/synchronization.

e

Application-level Caching
= Caching of frequently accessed data (request responses, file
mappings, etc.)
= Single cache for AMPED and SPED.

Flash: AMPED implementation

= Implements helpers as processes for portability.

= Three types of application-level caching (filename translations,
response headers, file mappings)

= Smart trick to keep data aligned by padding response headers
accordingly.

Performance Evaluation

Comparing architectures
= Compare four servers based on Flash: Flash, Flash-MT,
Flash-MP, Flash-SPED.
Comparing web servers

= Compare Flash and two state-of-the-art web servers Apache
and Zeus.

Evaluating optimizations

= Evaluate the impact of the various optimizations implemented
in Flash.

13/20

Evaluation environment

= Same hardware (Pentium Il, 128MB RAM).
= Two different operating systems (Solari, FreeBSD).
= 100Mbit/s ethernet connections.

14/20

Bandwidth (Mb/s)
Connection rate (regs/sec)

5 10 15 20
File size (kBytes)

Cache-bound workload on Solaris

Nw

Bandwidth (Mb/s)
8

Connection rate (reqs/sec)

=)

5 10 15
File size (kBytes)

Same workload on FreeBSD

Real workload

200 T T

__ 150
@
S
e
£ 100
3
]
m

50

* Apache
! 1 L L 1 I L I
15 30 45 60 75 90 105 120 135 150

Data set size (MB)

Real workload on FreeBSD

16/20

Evaluating in a WAN

= Previous evaluations were done in a LAN setting.

m

This does not accurately model the increased connection
times due to packet losses and limited bandwidth that occur
in a WAN.

= Idea: Use persistent connections

120

Bandwidth (Mb/s)

o 100 200 300 400 500
of simultaneous clients

Impact of concurrent HTTP connections

Optimizations impact

. 5500 ‘O all (Flash) Y mmap & resp
S 3000} N < path & mmap + mmap only
é 1< path & resp O resp only
\8_/ 2500 s s IR AT s T
prs _ & :
S 2000 . o < S R e e e
S S S :
5 1500 % —g——g
% 1000 - - -~~~ L ==
o : :

500

(0] 5 10 15 20

File size (KBytes)

Impact of optimizations

= Each optimization (or cache hit) avoids one request.

= Performance may double thanks to optimizations.

Optimizations impact

. 5500 ‘O all (Flash) Y mmap & resp
S 3000} N < path & mmap + mmap only
é 1< path & resp O resp only
\8_/ 2500 s s IR AT s T
prs _ & :
S 2000 . o < S R e e e
S S S :
5 1500 % —g——g
% 1000 - - -~~~ L ==
o : :

500

(0] 5 10 15 20

File size (KBytes)

Impact of optimizations

= Each optimization (or cache hit) avoid one request.

= Performance may double thanks to optimizations.

Conclusions

= Choice of server architecture is really important for
performance.

u

The evaluation proved that the choice of OS is/was important.

m

Flash matches the performance of SPED architectures on
cache-bound workloads and exceeds the performance of
MP/MT architectures on disk-bound workloads.
= Flash exceeds the performance of Zeus and Apache by a
good margin.

"

Only focuses on 1/O concurrency.

