
Flash: An Efficient and Portable
Web Server

Presentation by Nikolaos Giannarakis

Vivek S. Pai, Peter Druschel, Willy Zwaenepoel

November 18, 2015



Web Servers

2/20

Fulfill client (e.g. web browser) request for web content.
To achieve high throughput web servers rely on caching
popular content.
If the requested content is not found in the cache then the
server must fetch it from the disk.
Key idea: Overlap fetching (and other blocking actions) with
serving requests for cached content.



Handling a request

3/20

Each task involves either network communication or disk I/O
and hence can block.
Server must interleave the tasks of many requests to improve
performance.
Different ways to achieve interleaving of tasks.



Multi-process architecture

4/20

...

Each process handles the tasks of a request sequentially.
Multiple processes are used to serve many requests
concurrently.

+ Interleaving in this model occurs naturally, as the OS will
context switch when a process blocks.

− High overhead from multiple processes, less aggressive
optimizations.



Multi-threaded architecture

5/20

Multiple threads are used to serve many requests concurrently.
+ Less overhead compared to MP.
+ Shared address space allows more aggressive optimizations.
− Requires synchronization for accessing shared data.
− Only feasible with OS that supports kernel threads.



Single-process event-driven architecture

6/20

Single process, interleaving of tasks is achieved using
non-blocking I/O.
Issues I/O and proceeds to next request. Uses polling to
check for completion of I/O.

+ Minimal overhead, no context switches or synchronization
required.

− Missing abstraction of sequential execution of the tasks,
control flow and reasoning become more complicated.

− In practice I/O operations may block.



Asymmetric multi-process event-driven architecture

7/20

Combines the previous approaches.
A single process runs as an event loop but delegates blocking
actions to helper threads/processes.

+ Less overhead compared to MP/MT, performance of single
process on cached requests.

+ Admits the same optimizations as SPED.
− Only provides I/O concurrency, not CPU concurrency.



Design comparison

8/20

Disk Blocking
The cost of disk operations differ between the architectures
depending on whether they can cause the system to block.
In MP, MT and AMPED only one request gets blocked, the
system can serve other requests.
In SPED if one task blocks the whole server blocks as well.



Design comparison

9/20

Memory Consumption
The memory consumption of the server is important because
the server caches requests. The more memory, the more
requests it can cache.
SPED has very low memory consumption. It doesn’t require
any memory to keep track of children processes/threads.
MT has some additional cost due to per-request threads.
AMPED also incurs some overhead, but notice that AMPED’s
helpers are per concurrent I/O task and not per request.
MP has the highest memory overhead due to per-request
processes.



Design comparison

10/20

Disk Utilization
Multiple disks may improve performance if the server can
generate multiple I/O operations concurrently.
SPED can only generate one I/O operation hence it cannot
benefit from multiple disks (assumes it blocks?).
MT, MP and AMPED can generate concurrent I/O
operations.



Design comparison

11/20

Information Gathering
Servers perform profiling to uncover possibilities for
optimizations.
Trivial in SPED and AMPED because of single thread.
MP and MT require communication/synchronization.

Application-level Caching
Caching of frequently accessed data (request responses, file
mappings, etc.)
Single cache for AMPED and SPED.



Flash: AMPED implementation

12/20

Implements helpers as processes for portability.
Three types of application-level caching (filename translations,
response headers, file mappings)
Smart trick to keep data aligned by padding response headers
accordingly.



Performance Evaluation

13/20

Comparing architectures
Compare four servers based on Flash: Flash, Flash-MT,
Flash-MP, Flash-SPED.

Comparing web servers
Compare Flash and two state-of-the-art web servers Apache
and Zeus.

Evaluating optimizations
Evaluate the impact of the various optimizations implemented
in Flash.



Evaluation environment

14/20

Same hardware (Pentium II, 128MB RAM).
Two different operating systems (Solari, FreeBSD).
100Mbit/s ethernet connections.



Synthetic workload

15/20

Cache-bound workload on Solaris

Same workload on FreeBSD



Real workload

16/20

Real workload on FreeBSD



Evaluating in a WAN

17/20

Previous evaluations were done in a LAN setting.
This does not accurately model the increased connection
times due to packet losses and limited bandwidth that occur
in a WAN.
Idea: Use persistent connections

Impact of concurrent HTTP connections



Optimizations impact

18/20

Impact of optimizations

Each optimization (or cache hit) avoids one request.
Performance may double thanks to optimizations.



Optimizations impact

19/20

Impact of optimizations

Each optimization (or cache hit) avoid one request.
Performance may double thanks to optimizations.



Conclusions

20/20

Choice of server architecture is really important for
performance.
The evaluation proved that the choice of OS is/was important.
Flash matches the performance of SPED architectures on
cache-bound workloads and exceeds the performance of
MP/MT architectures on disk-bound workloads.

Flash exceeds the performance of Zeus and Apache by a
good margin.

Only focuses on I/O concurrency.


