No compromises: distributed
transactions with consistency,
availability, and performance

Aleksandar Dragojevic , Dushyanth

Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis,
Anirudh Badam, Miguel Castro

FaRM

A main memory distributed computing platform that
provides distributed ACID

— Serializability

— High availability

— High performance
Two hardware trends to eliminate storage and network
bottlenecks

— Fast commodity networks with RDMA

— Inexpensive approach to provide non-volatile DRAM

Primary-backup replication and unreplicated coordinators,
reducing message counts compared with Paxos

One-side RDMA, parallel recovery...

Non-volatile DRAM

e Distributed UPS makes DRAM durable

— Lithium-ion batteries

— Saves contents of memory to SSD using energy
from batteries

* Cost
— Energy cost $0.55/GB
— Storage cost (reserving SSD) $0.9/GB
— ~15% of DRAM cost (NVDIMM costs 3-5x more)

Programming Model and Architecture

* Abstraction of a global address space that
spans machines in a cluster

 FaRM API provides transparent access to local
and remote objects within transactions

FaRM Architecture

Machine A ' e Machine D |

] I

Applicati CPU '

pplication “ /renewa[s L (CM) :
FARM

Locil read/ \ NVRAM

Regionl Tx log [Tx log stgqueue'

B N B

Remote Messages
reads Txlrecords Tx records Co-ordination

I ' ‘ service
Machine B' (Zookeeper)

Figure 3. FaRM architecture

Architecture

Configuration <i, S, F, CM>
— i: 64-bit unique configuration identifier
— S:set of machines
— F: mapping to failure domains
— CM: configuration manager

Zookeeper ensures machines agree on the current configuration
and stores it (not for managing leases, detecting failures, etc.)

Fault tolerance
— One primary and f replicas
CM allocates new region (GB) in primary and replicas
— Commit allocation only all replicas succeed
Ring-buffer based send receive pairs
— The sender appends records to the log using one-sided RDMA writes
— The receiver periodically polls the head of the log

Distributed Transactions and
Replication

Lock

Validate

Commit backups
Commit Primaries
Truncate

Execute phase | . igiation COMmMIt phase
point Decision Report committed to app

R

1. LOCK 2. VALIDATE 3;2!:13:1“ 4piﬁx‘r\:\lll 5. TRUNCATE
Figure 4. FaRM commit protocol with a coordinator C,
primaries on P, P, P3, and backups on By, Bs, B3. P; and
P, are read and written. P; is only read. We use dashed lines
for RDMA reads, solid ones for RDMA writes, dotted ones
for hardware acks, and rectangles for object data.

Correctness and Performance

e Correctness

— Locking ensures serialization of write and
validation ensures serialization of read

— Serializablity across failures: wait for hardware
acks from all backups before writing COMMIT-
PRIMARY

— The coordinator reserves log space at all
participants to avoid involving he backups’ CPUs

Correctness and Performance

e Performance

— Two-phase commit (Spanner)
* requires 2f+1 replicas to tolerate f failures
* Each state machine operation requires 2f+1 round trip
messages (4P(2f+1) messages)
— FaRM

* Use primary —backup replication instead of Paxos state
machine replication

* f+1 copies
e Coordinator state is not replicated
 Commit phase uses Pw(f+3) one-side RDMA writes

Failure Recovery

Durability and high availability by replication
Machines can fail by crashing but can recover
the data by using non-volatile memory

Durability for all committed transactions even
the entire cluster fails or loss power as data
are persisted in non-volatile DRAM

Tolerant f non-volatile DRAM failures

Failure Detection

 Each machine holds a lease at the CM and the
CM holds a lease at every other machine

* Expiration of any lease triggers failure recovery

* 5ms short lease to guarantee high availability

— Dedicated queue pairs for leases

— Lease manager uses Infiniband with connectionless
unreliable datagram transport

— Dedicated lease manager thread that runs at the
highest user-space priority
— Preallocate memory for the lease manager

suspect S.
PeCt>s Update <9, ...> to

<10, {5,554} £, CM=5,> stop RDMA reads to S,

/

CM=S, \\7 \ REMAP =7~

1.SUSPECT 2.PROBE 3.UPDATE 4. REMAP 5. SEND NEW 6. APPLY NEW 7. COMMIT NEW
CONFIGURATION REGIONS CONFIGURATION CONFIGURATION CONFIGURATION

Suspect
Probe

Figure 5. Reconfiguration

Update configuration
Remap regions

Send new configuration
Apply new configuration
Commit new configuration

Transaction State Recovery

Block access to recovering regions
Drain logs

Find recovering reansactions

Lock recovery

Replicate log records

Vote

Decide

Evaluation

* Setup

— 90 machines for FaRM cluster and 5 machines for
replicated Zookeepers

— 256GB DRAM and two 8-core Intel E5 CPUs
— 56Gbps Infiniband NICs

e Benchmarks

— Telecommunication Application Transaction
Processing (TATP)

— TCP-C a well-known database benchmark with
complex transactions

Performance

1000 . . ’ . '
— Median . 6000 e—e Median
+ -+ 90th ! ¢ -+ 90th
800r ¢ 5000}
—_— ‘ —_—
> N >
e N 5 3000
3 , o
© 400¢ . ©
o 2000
o0 v 1000} ¢
b o HRE T e ommmmmmmm
. e .
(g == Y S . —@ T \ s 1 0 " L L L
0 30 60 90 120 150 0 1 2 3 4 5
Operations / us Operations / us

Figure 7. TATP performance Figure 8. TPC-C performance

Operations / us

140

120

100

80

60

40

20

Failure Recovery

a

data-rec-start
suspect 41.8ms
probe all-active
2.2ms : 39.0ms
e
zookeeper : ¢ i config-commit
4.8ms ::20.5ms
— .
20 0 20 40 60
Time (ms)

(a) Time to full throughput

140 Hb
120
100 ! :
v , ;
y ! : 60
v gp , :
° ' :
g 60 f
g | a0
5 ; t
40 suspect P done
<« [> 20
20f | ! ’
ol e

Time (ms)

(b) Time to full data recovery

0 5000 10000 15000 20000 25000 30000 35000

Recovered regions

Figure 9. TATP performance timeline with failure

CM Failure

suspect s . . data-rec-start
P -1 122.2ms
\)E 1 L e

probe i . all-active

4.8ms i - 110.4ms

\;: {/

zookeeper: ' .- config-commit

7.9ms it . :97.4ms

(0]
o

(o))
o

%)
S~
%)
C
o
e
©
—
Q
Q.
O

NS
o

N
o

50) 50 100 150 200
Time (ms)

Figure 11. TATP performance timeline with CM failure

Conclusion

* FaRM, a memory distributed computing
platform

— Distributed transactions and replication
— Strict serializability and high performance

* Primary-backup replication, not coordinator
replication

* High throughput and low latency, fast
recovery

