No compromises: distributed
transactions with consistency,
availability, and performance

Aleksandar Dragojevic , Dushyanth

Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis,
Anirudh Badam, Miguel Castro



FaRM

A main memory distributed computing platform that
provides distributed ACID

— Serializability

— High availability

— High performance
Two hardware trends to eliminate storage and network
bottlenecks

— Fast commodity networks with RDMA

— Inexpensive approach to provide non-volatile DRAM

Primary-backup replication and unreplicated coordinators,
reducing message counts compared with Paxos

One-side RDMA, parallel recovery...



Non-volatile DRAM

e Distributed UPS makes DRAM durable

— Lithium-ion batteries

— Saves contents of memory to SSD using energy
from batteries

* Cost
— Energy cost $0.55/GB
— Storage cost (reserving SSD) $0.9/GB
— ~15% of DRAM cost (NVDIMM costs 3-5x more)



Programming Model and Architecture

* Abstraction of a global address space that
spans machines in a cluster

 FaRM API provides transparent access to local
and remote objects within transactions



FaRM Architecture
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Figure 3. FaRM architecture




Architecture

Configuration <i, S, F, CM>
— i: 64-bit unique configuration identifier
— S:set of machines
— F: mapping to failure domains
— CM: configuration manager

Zookeeper ensures machines agree on the current configuration
and stores it (not for managing leases, detecting failures, etc.)

Fault tolerance
— One primary and f replicas
CM allocates new region (GB) in primary and replicas
— Commit allocation only all replicas succeed
Ring-buffer based send receive pairs
— The sender appends records to the log using one-sided RDMA writes
— The receiver periodically polls the head of the log



Distributed Transactions and
Replication
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Correctness and Performance

e Correctness

— Locking ensures serialization of write and
validation ensures serialization of read

— Serializablity across failures: wait for hardware
acks from all backups before writing COMMIT-
PRIMARY

— The coordinator reserves log space at all
participants to avoid involving he backups’ CPUs



Correctness and Performance

e Performance

— Two-phase commit (Spanner)
* requires 2f+1 replicas to tolerate f failures
* Each state machine operation requires 2f+1 round trip
messages (4P(2f+1) messages)
— FaRM

* Use primary —backup replication instead of Paxos state
machine replication

* f+1 copies
e Coordinator state is not replicated
 Commit phase uses Pw(f+3) one-side RDMA writes



Failure Recovery

Durability and high availability by replication
Machines can fail by crashing but can recover
the data by using non-volatile memory

Durability for all committed transactions even
the entire cluster fails or loss power as data
are persisted in non-volatile DRAM

Tolerant f non-volatile DRAM failures



Failure Detection

 Each machine holds a lease at the CM and the
CM holds a lease at every other machine

* Expiration of any lease triggers failure recovery

* 5ms short lease to guarantee high availability

— Dedicated queue pairs for leases

— Lease manager uses Infiniband with connectionless
unreliable datagram transport

— Dedicated lease manager thread that runs at the
highest user-space priority
— Preallocate memory for the lease manager
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Transaction State Recovery

Block access to recovering regions
Drain logs

Find recovering reansactions

Lock recovery

Replicate log records

Vote

Decide



Evaluation

* Setup

— 90 machines for FaRM cluster and 5 machines for
replicated Zookeepers

— 256GB DRAM and two 8-core Intel E5 CPUs
— 56Gbps Infiniband NICs

e Benchmarks

— Telecommunication Application Transaction
Processing (TATP)

— TCP-C a well-known database benchmark with
complex transactions



Performance
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Figure 9. TATP performance timeline with failure




CM Failure
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Figure 11. TATP performance timeline with CM failure




Conclusion

* FaRM, a memory distributed computing
platform

— Distributed transactions and replication
— Strict serializability and high performance

* Primary-backup replication, not coordinator
replication

* High throughput and low latency, fast
recovery



