

Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky+, and David G. Andersen‡

* Princeton University, † Intel Lab, ‡ Carnegie Mellon University

Presented by Mina Tahmasbi Arashloo

Motivation and Problem Statement

- It is provably impossible to have the strongest forms of consistency and low latency in georeplicated setting
- Key-value data model is **too simple**
- Can we build a system that provides low latency
 - with stronger consistency than eventual
 - for a richer data model ?

Contributions

- A scalable geo-replicated data store with:
 - low latency
 - causal consistency
 - support for column-family data model
 - read-only transactions
 - write-only transactions

Background : Web Service Architecture

* The figure is adopted from Wyatt Lloyd's slides for his NSDI'13 presentation.

Background : Column-Family Data Model

- Pioneered by Google's BigTable
- A "map of maps of maps" of named columns

	User Data		Associations						
			Friends			Likes			
	ID	Town	Alice	Bob	Carol	Cats	Dogs		
Alice	1337	NYC	-	3/2/11	9/2/12	9/1/12	-		
Bob	2664	LA	3/2/11	-	-	-	-		
•									

Background: Causal Consistency

Eiger - Assumptions

- Each data center should have:
 - Partitioned key-space across *logical* servers
 - Linearizability
 - Logical servers that are available unless the whole data center fails

Client Library

- Mediates access to the servers
 - Create sub-requests based how the keys are partitioned
- Tracks causality and attaches dependencies to writes:

Basic Operations

Logical time

- based on Lamport clocks
- provide global timestamps:
 - stored with the data
- Read Operations
 - return the data and timestamp
 - timestamp used for tracking dependencies

Basic Operations

- Local writes
 - updates the value
 - records timestamp (with the server id)
- Replication
 - The remote server discards if it has a newer version (based on timestamp)
 - Handles writes conflicts!
 - last writer wins

Read-Only Transactions

- First round:
 - receive earliest valid time (EVT) and latest valid time (LVT) from each server
 - If minimum LVT >= maximum EVT, there is a time where all the values are valid (*effective time*)

Read-Only Transactions

- Second round:
 - Ask the server for the location value at the *effective time*

Write-Only Transactions

- **Two-phase commit** with positive cohorts and indirection (2PC-PCI)
- The client library
 - chooses one key as the coordinator
 - sends sub-requests to corresponding servers with the coordinator key

Each server

- writes the value with "pending" status
- sends a "YESVOTE" to coordinator

Coordinator

- timestamps the transaction
- sends "COMMIT" to participants

Write-Only Transactions

- Each transaction sub-request is replicated
- Each remote server
 - sends a "NOTIFTY" to the remote coordinator
- The remote coordinator
 - checks dependencies
 - sends "PREPARE" messages
 - the rest continues similar to the local datacenter

Failure

- Depends on the underlying building blocks assumptions for logical server's failure
- Transient datacenter failure : no ill effects
 - requires other datacenters to redirect the client to the original datacenter for configured period
- Long datacenter failures : causality loss
 - move to a new datacenter with empty context
- Permanent datacenter failure : data loss

Evaluation - Low Latency

	Latency (ms)				
	50%	90%	95%	99%	
Reads					
Cassandra-Eventual	0.38	0.56	0.61	1.13	
Eiger 1 Round	0.47	0.67	0.70	1.27	
Eiger 2 Round	0.68	0.94	1.04	1.85	
Eiger Indirected	0.78	1.11	1.18	2.28	
Cassandra-Strong-A	85.21	85.72	85.96	86.77	
Cassandra-Strong-B	21.89	22.28	22.39	22.92	
Writes					
Cassandra-Eventual Cassandra-Strong-A	0.42	0.63	0.91	1.67	
Eiger Normal	0.45	0.67	0.75	1.92	
Eiger Normal (2)	0.51	0.79	1.38	4.05	
Eiger Transaction (2)	0.73	2.28	2.94	4.39	
Cassandra-Strong-B	21.65	21.85	21.93	22.29	

Evaluation - Scalability

Related Work

- Bayou
 - Requires single-machine replicas (datacenters)
- COPS
 - Also causal consistency, low latency, and readonly transactions
 - Eiger has richer data model, more powerful abstractions, and has less dependency overhead

Strengths

- Has low latency despite being geo-replicated
- Provides stronger consistency guarantees than previous work with negligible overhead
- Offers fast and non-blocking read-only and write-only transactions
- Scales almost linearly with #servers/datacenter
- Solid evaluation and comparison to previous work

Weaknesses

- Limited transactions
 - Read-only
 - Write-only
- Limited to causal consistency

* The figure is taken from Wyatt Lloyd's PhD thesis.

Questions? Comments?

- References
 - Lloyd, Wyatt, et al. "Stronger Semantics for Low-Latency Geo-Replicated Storage." NSDI. 2013.
 - Chang, Fay, et al. "Bigtable: A distributed storage system for structured data." ACM Transactions on Computer Systems (TOCS) 26.2 (2008): 4.