CryptDB

Protecting Confidentiality with Encrypted Query Processing

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan
MIT SAIL

Votivation

* Protect DMBS against confidential data leaks
e Curious DBAs

 Adversaries that take over the application anad
the DBMS server

Contributions

* The first DBMS to perform SQL queries over
encrypted data (SQL-aware encryption strategy)

e Moderate overhead

* Requires no modifications to applications and
DBMS

System Architecture

USCI' 1 : : :(...................................... Thl'eat 1 > :
[ST T T T T P TP T ST e T PP T PP PP TP PRET PP RPRET T ...
(Password Pl) \ ' hreat 2 '):
s’iié’,‘;i ! Application <:—> Database proxy - Unmodiﬁed DBMS <—>{ CryptDB UDFs | ,
I I
User 2 | Key setup | : :
| I I I
G)assword PZ) : ACthC keys otated : Data !
! schema | | an}’ pted) key table !
|
Users' computers 1 Application server | CryptDB proxy server : DBMS server :

Techniques

1. SQL-aware encryption
 all queries are composed of a set of primitive operations

e data are encrypted in a way that allow execution on encrypted data

2. Adjustable query-based encryption
 Dynamically adjust the encryption scheme depending on the types of queries

* Avoids a priori leak of information

3. Chain encryption keys to user passwords

e decryption only by using the password of one of the users with access to the data

Threat 1: Curious DBA

* Passive attacker with full access to the DBMS server
» (Goal: preserve confidentiality
e Sensitive data never available on plaintext

 May reveal some information depending in the
classes of computation required by the queries

 The DBMS server cannot compute the result of
gueries that involve computation classes that are not
requested by the application

T'hreat 2: Arpbitrary Attack

e [he attacker can gain full access to the DBMS, the
poroxy and the application servers

 Can access the keys!!

e Solution: Use user passwords to encrypt the
different items

* [he attacker can still gain access to the data
avallable to currently logged in users!!!

Executing Queries on Encrypted
Data: SQL-aware encryption

« Different encryption strategies depending on the type of the
computations

RND: maximum security, does not allow any computation

DET: reveal which values are equal to each other; allows equality checks (GROUP BY,
COUNT, DISTINCT)

OPE: reveals the order relations on encrypted values; allows queries that involve ordering
(ORDER BY, MIN, SORT)

HOM: allows computations to be performed directly on the ciphertext (e.g. summation);
inefficient for some operations

JOIN/OPE-JOIN: allows equality joins/joins by order relations

SEARCH: allows searches on encrypted text

Onion encryption

Goal: dynamically adjust the layer of encryption

Wrap values in layers of increasingly stronger encryption

Onions layer the classes of computation they allow

Onion layer decryption depending on the computation required by the

query

[RND: no functionality A

'DET: equality selection

" JOIN: equality join)
(any value)

Onion Eq

(RN D: no functionality\
(" OPE: order
OPE-JOIN:
range join
(any value)
= —
Onion Ord

 SEARCH |
(text value)
_

w

Onion Search

HOM: add |
(int value)
-

>

Onion Add

Query Execution Example

SELECT ID FROM Employees WHERE Name = ‘Alice’,

 Requires lowering the encryption layer to DET

e [he proxy issues the following queries:

SELECT Cl1-Eq, C1-IV FROM Tablel WHERE C2-Eq = x7..d,

UPDATE Tablel SET
C2-Eq = DECRYPT RND(K7; 2 kqrNDs C2-Eq, C2-IV),

Multiple Principals

« (Goal: Confidentiality when the application and the proxy are
untrusted, especially for multi-user apps

* Schema annotations to specify principals and the data each
principal has access to

e 3 steps

1.

2.

Specity principal types (e.qg. users, groups, messages)

Specity columns with sensitive data and which principals will
have access to them

Specify how to delegate a principle’s rights to another with a
speaks for relation

Key Chaining
Each principal is associated with a randomly chosen

key

Sensitive fields are encrypted with the key of the
principal

Onion keys are derived from a principal’s key (instead
of a single master key in single-principal mode)

Only the data of inactive users is protected at the
time of the attack!

Security Improvements

- Minimum onion layers: specity the lowest
possible layer that may be revealed

- In-proxy processing: evaluate predicates in the
proxy; less information revealed to the server

- Training mode: allows the developer to provide a
trace of queries and examine the results

- Onion re-encryption: re-encrypt onions back to a
higher layer after a querie

Performance Optimizations

- Developer annotations: indicate sensitive fields,
avold encryption overhead

- Known query set: adjust the onion levels
beforehand

- Ciphertext pre-computing and caching: pre-
compute (for HOM) or cache (for OPE) encryptions
of frequently used constants

Implementation

+ C++ library

e query parser; query encryptor/rewriter; result
decryption module

- Lua module

* Passes queries and results from and to the C++
library

e 8000 lines of C++ code; 150 lines of Lua code; 10000
ines of testing code

Evaluation

e Difficulty of moditying and application to run on
CryptDB

e Supported gueries/applications

e Performance overhead

Application changes

Application Annotations Login/logout code Sensitive fields secured, and examples of such fields
phpBB 31 (11 unique) 23: private messages (content, subject), posts, forums
HotCRP 29 (12 unique) 22: paper content and paper information, reviews
grad-apply 111 (13 unique) 103: student grades (61), scores (17), recommendations, reviews

TPC-C (single princ.)

92: all the fields in all the tables encrypted

e few changes for multi-principal mode

* NO changes for single-principal mode

Functional/Security
Evaluation (1)

Analyzed the queries from 6 web application

They support most queries (very few columns need to be
in plaintext)

They evaluate the amount of information leaked using the
weakest onion encryption scheme than needs to be
exposed (minEnc)

They show that most of the sensitive columns are
encrypted with the highest security schemes (RND, HOM
and DET it no rep.)

Functional/Security

Evaluation

Application Total Consider Needs Needs Needs Non-plaintext cols. with MinEnc: Most sensitive
cols. forenc. plaintext HOM SEARCH | RND SEARCH DET OPE | cols. at HIGH

phpBB 563 23 0 1 0 21 0 1 1 6/6
HotCRP 204 22 0 2 1 18 1 1 2 18/18
grad-apply 706 103 0 0 2 95 0 6 2 94 /94
OpenEMR 1,297 566 7 0 3 526 2 12 19 5257540
MIT 6.02 15 13 0 0 0 7 0 4 2 1/1
PHP-calendar 25 12 2 0 2 3 2 4 1 3/4
TPC-C 92 92 0 8 0 65 0 19 8 —
Trace from sql.mit.edu 128,840 128,840 1,094 1,019 1,125 80,053 350 34,212 13,131 -

.. with in-proxy processing |128,840 128,840 571 1,016 1,135 84,008 398 35,350 8,513 —

.. col. name contains pass 2,029 2,029 2 0 0 1,936 0 91 0 —

.. col. name contains content| 2,521 2,521 0 0 52 2,215 52 251 3 —

.. col. name contains priv 173 173 0 4 0 159 0 12 2 —

Performance Evaluation (I)

e WO machines:

1. 2.4 GHz Intel Xeon E5620 4-core processors and 12 GB of RAM to run
the MySQL 5.1.54 server

2. 2.4 GHz AMD Opteron 8431 6-core processors and 64 GB of RAM to
run the CryptDB proxy and the clients

Performance Evaluation (Il):
TPC-C experiments

Queries / sec
N
S
S

10000 o MySQL —_——
: : : CryptDB —
0 i i i | | |
1 2 3 4 5 6 7 8
Number of server cores

Figure 10: Throughput for TPC-C queries, for a varying number of

cores on the underlying MySQL DBMS server.

o
§
I

MySQL
CryptDB B33
12000 Strawman

Queries / sec

N o0

s 8 8
T

2000

0
-

N7

X

v

PAX

o

Figure 11: Throughput of different types of SQL queries from the TPC-
C query mix running under MySQL, CryptDB, and the strawman design.
“Upd. inc” stands for UPDATE that increments a column, and “Upd. set”
stands for UPDATE which sets columns to a constant.

strawman design: performs each query over data
encrypted with RND by decrypting the relevant data
using a UDF, performing the query over the plaintext,
and re-encrypting the result

Performance Evaluation (l1):

Multi-user web applica;

1oNs

* Throughput of phpBB tor workload with 10 parallel

clients

20 -
18 -
16 -
14 -
12 -
10 -

Throughput (HTTP req. / sec)

oSN B OV ®
|

MySQL MySQL+proxy CryptDB

Figure 14: Throughput comparison for phpBB. “MySQL” denotes
phpBB running directly on MySQL. “MySQL+proxy” denotes phpBB
running on an unencrypted MySQL database but going through MySQL
proxy. “CryptDB” denotes phpBB running on CryptDB with notably
sensitive fields annotated and the database appropriately encrypted. Most
HTTP requests involved tens of SQL queries each. Percentages indicate
throughput reduction relative to MySQL.

DB | Login Rpost Wpost Rmsg W msg

MySQL | 60ms S50ms 133ms 61lms 237 ms
CryptDB | 67ms 60ms 151ms 73 ms 251 ms

Figure 15: Latency for HTTP requests that heavily use encrypted fields

in phpBB for MySQL and CryptDB. R and W stand for read

and write.

Storage Overhead

* |ncreased the DB size by 3.76x at most

* Cryptographic expansion of integer fields HOM (32
bits to 2048 bits)

 phpBB

e pefore: 2.6MB (10 users; 1000 private
messages ; 1000 posts)

e gfter: 3.3MB

Conclusion

* Practical confidentiality in the face of two different
classes of threats

 Reasonable pertormance

e strong security (most of the times)

» No significant modifications to applications and DBMS
 May limit the possible queries or reduce security

* No guarantees for active users

Controversy

e “On the Difficulty of Securing Web Applications using CryptDB”.
lhsan Haluk AKIN and Berk Sunar

e show that cryptDB is ineffective for threat 2

e demonstrate that an attacker can steal information and even gain
administrator privileges

e “Inference Attacks on Property-Preserving Encrypted Databases”.
Muhammad Naveed, Seny Kamara and Charles V. Wright

e nference attacks on encrypted database systems like CryptDB

e The authors of cryptDB claim that they used cryptDB wrong;
Neveed et al. insist that they used it correctly

Questions?

