
CryptDB
Protecting Confidentiality with Encrypted Query Processing

1

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan
MIT SAIL

Motivation

• Protect DMBS against confidential data leaks

• Curious DBAs

• Adversaries that take over the application and
the DBMS server

2

Contributions

• The first DBMS to perform SQL queries over
encrypted data (SQL-aware encryption strategy)

• Moderate overhead

• Requires no modifications to applications and
DBMS

3

System Architecture

Techniques
1. SQL-aware encryption

• all queries are composed of a set of primitive operations

• data are encrypted in a way that allow execution on encrypted data

2. Adjustable query-based encryption

• Dynamically adjust the encryption scheme depending on the types of queries

• Avoids a priori leak of information

3. Chain encryption keys to user passwords

• decryption only by using the password of one of the users with access to the data

Threat 1: Curious DBA
• Passive attacker with full access to the DBMS server

• Goal: preserve confidentiality

• Sensitive data never available on plaintext

• May reveal some information depending in the
classes of computation required by the queries

• The DBMS server cannot compute the result of
queries that involve computation classes that are not
requested by the application

Threat 2: Arbitrary Attack
• The attacker can gain full access to the DBMS, the

proxy and the application servers

• Can access the keys!!

• Solution: Use user passwords to encrypt the
different items

• The attacker can still gain access to the data
available to currently logged in users!!!

Executing Queries on Encrypted
Data: SQL-aware encryption

• Different encryption strategies depending on the type of the
computations

• RND: maximum security, does not allow any computation

• DET: reveal which values are equal to each other; allows equality checks (GROUP BY,
COUNT, DISTINCT)

• OPE: reveals the order relations on encrypted values; allows queries that involve ordering
(ORDER BY, MIN, SORT)

• HOM: allows computations to be performed directly on the ciphertext (e.g. summation);
inefficient for some operations

• JOIN/OPE-JOIN: allows equality joins/joins by order relations

• SEARCH: allows searches on encrypted text

Onion encryption
• Goal: dynamically adjust the layer of encryption

• Wrap values in layers of increasingly stronger encryption

• Onions layer the classes of computation they allow

• Onion layer decryption depending on the computation required by the
query

Query Execution Example

• Requires lowering the encryption layer to DET

• The proxy issues the following queries:

Multiple Principals
• Goal: Confidentiality when the application and the proxy are

untrusted, especially for multi-user apps

• Schema annotations to specify principals and the data each
principal has access to

• 3 steps

1. Specify principal types (e.g. users, groups, messages)

2. Specify columns with sensitive data and which principals will
have access to them

3. Specify how to delegate a principle’s rights to another with a
speaks for relation

Key Chaining
• Each principal is associated with a randomly chosen

key

• Sensitive fields are encrypted with the key of the
principal

• Onion keys are derived from a principal’s key (instead
of a single master key in single-principal mode)

• Only the data of inactive users is protected at the
time of the attack!

Security Improvements
• Minimum onion layers: specify the lowest

possible layer that may be revealed

• In-proxy processing: evaluate predicates in the
proxy; less information revealed to the server

• Training mode: allows the developer to provide a
trace of queries and examine the results

• Onion re-encryption: re-encrypt onions back to a
higher layer after a querie

Performance Optimizations

• Developer annotations: indicate sensitive fields,
avoid encryption overhead

• Known query set: adjust the onion levels
beforehand

• Ciphertext pre-computing and caching: pre-
compute (for HOM) or cache (for OPE) encryptions
of frequently used constants

Implementation
• C++ library

• query parser; query encryptor/rewriter; result
decryption module

• Lua module

• Passes queries and results from and to the C++
library

• 8000 lines of C++ code; 150 lines of Lua code; 10000
lines of testing code

Evaluation

• Difficulty of modifying and application to run on
CryptDB

• Supported queries/applications

• Performance overhead  

Application changes

• few changes for multi-principal mode

• no changes for single-principal mode

Functional/Security
Evaluation (I)

• Analyzed the queries from 6 web application

• They support most queries (very few columns need to be
in plaintext)

• They evaluate the amount of information leaked using the
weakest onion encryption scheme than needs to be
exposed (minEnc)

• They show that most of the sensitive columns are
encrypted with the highest security schemes (RND, HOM
and DET if no rep.) 

Functional/Security
Evaluation (II)

Performance Evaluation (I)

• Two machines:

1. 2.4 GHz Intel Xeon E5620 4-core processors and 12 GB of RAM to run
the MySQL 5.1.54 server

2. 2.4 GHz AMD Opteron 8431 6-core processors and 64 GB of RAM to
run the CryptDB proxy and the clients

Performance Evaluation (II): 
TPC-C experiments

strawman design: performs each query over data
encrypted with RND by decrypting the relevant data
using a UDF, performing the query over the plaintext,
and re-encrypting the result

Performance Evaluation (III):  
Multi-user web applications

• Throughput of phpBB for workload with 10 parallel
clients

Storage Overhead
• Increased the DB size by 3.76x at most

• Cryptographic expansion of integer fields HOM (32
bits to 2048 bits)

• phpBB

• before: 2.6MB (10 users; 1000 private
messages ; 1000 posts)

• after: 3.3MB

Conclusion
• Practical confidentiality in the face of two different

classes of threats

• Reasonable performance

• strong security (most of the times)

• No significant modifications to applications and DBMS

• May limit the possible queries or reduce security

• No guarantees for active users

Controversy
• “On the Difficulty of Securing Web Applications using CryptDB”.

Ihsan Haluk AKIN and Berk Sunar

• show that cryptDB is ineffective for threat 2

• demonstrate that an attacker can steal information and even gain
administrator privileges

• “Inference Attacks on Property-Preserving Encrypted Databases”.
Muhammad Naveed, Seny Kamara and Charles V. Wright

• inference attacks on encrypted database systems like CryptDB

• The authors of cryptDB claim that they used cryptDB wrong;
Neveed et al. insist that they used it correctly

Questions?

