Chain Replication with
Apportioned Queries

Jeff Terrace and Michael J. Freedman, 2009

Problem

Design a durable object storage system with
strong consistency guarantees. Bonus points
awarded for high read throughput.

Definitions

* Object storage
- write(key,val)
- read(key)
e Strong consistency

- All reads/writes happen at an instant in time between
client request and acknowledgement

» Fail-stop servers
- Dead servers do no wrong
- Everyone can detect a dead server

Warmup: Primary/Backup
Replication

* Primary server handles all read/write requests

* On write request, primary first sends replicas to
backup servers, waits for acknowledgement,
then commits write.

* On primary fall

- Messy! Need to synchronize state between all
backups

Room for Improvement

* Backups can't be used to handle reads
- Fix: Send ACKNOWLEDGE messages to backups
signifying that a given write iIs complete
* Recovery from primary failure requires n-way
synchronization

- Fix: Impose a linear order on backups so that
backup I is ahead of backup i+1

CRAQ: Clean Reads

* When no writes are In progress, any node can
handle reads

| Read Request | | Read Request | | Read Request | | Read Request |

CRAQ: Writes

On write(key,val),

1.Head propagates PREPARE(key,val,version#) message down the
chain.

2.Tall receives PREPARE and commits write.
3.Tail propagates ACKNOWLEDGE(key,version#) back up the chain

4.Upon receipt of ACKNOWLEDGE(key,version#), a node may commit
the corresponding new object version.

|Write Request| | Dirty Read | | Clean Read |
\\ [K,V;] K l Vi e
\ / ‘é:#'...

I HEAD — - —) replica - - —>

CRAQ: Dirty Reads

* While waiting for an ACKNOWLEDGE, redirect
read requests to the tall

* Only a version request Is necessary!

Write Request| | Dirty Read | | Clean Read |
\\ [K,V;] K l Ve

I HEAD — - —) replica - - —>

CRAQ: Fallure Recovery

* Only nodes at the splice site need to
synchronize state (cf. primary/backup)

 Reads may continue away from the splice site.

1
—a\ 1 -
E T T - _—
p- <
g T MM
% LJI_ILJLJLJLJLZII:I m L
-~ Mmmd il L[
B 0
<
o I T T | | l
Time (s)

Figure 11: CRAQ’s read latency (shown here under mod-
erate load) goes up slightly during failure, as requests to the
failed node need to be retried at a non-faulty node.

[an]
(e
[
T3] -
m
E %
[an]
m m
©
|
o
Z 5][
[an]
[an]
[an]
[I [I [I
0 10 20 30 40 50

Time (s)

Figure 12: CRAQ’s write latency increases during failure,
since the chain cannot commit write operations.

Chain Layout & Management

* ~10 nodes per chain, ~1000 nodes, ~10000 chains

» 2 levels for chain management

- Within a datacentre, use consistent hashing to map
nodes to chains

- Across datacentres, use manual layout or consistent
hashing

 Make use of a black box coordination service (e.g.
ZooKeeper) to maintain chain membership lists
and notify nodes of changes

Optimizations and Extensions

Relaxed consistency
- Allow dirty reads (eventual consistency)

- Allow dirty reads with a time limit (bounded
Inconsistency)

Broadcast data, propagate metadata
Broadcast acknowledgements

Multi-object transactions for objects on the
same chain

Experimental Design & Results

 Compare single chain performance of CR and
CRAQ on Emulab over a 100MBiIt network

1o CRAQ & °
A CR/

i /T

4 a A A a a Ny Wy Wy Y—

Reads/s
0 20000 50000

Reads/s

I I I I I
2 4 6 8 10
Number of Clients
Figure 4: Read throughput as the number of readers in-
crease: A small number of clients can saturate both CRAQ

and CR, although CRAQ’s asymptotic behavior scales with
chain size, while CR is constant.

Experimental Design & Results

o
S | o CRAQ o CRAQ-7
o o [
3 Yo, 4 CR g i o CRAQ.3
o I ¢ ¢
. L . %H%¥O%%H‘ A CR-8
o i - 00%%%
o © I - o = ! % %
"--,D EG_
%'\:r n o
S . & CCD Mq’ﬁl
S - |IaeANM LR L & 2 & B “ =g i@@@
S = DE3 58665 & BEF G

At A A A A A S AL ALASLAAL A A ALK &

0
L

0
!

T [T [
0 50 100 150 200 250 0 20 40 60 80 1 (IJO
Writes/s Writes/s

Figure 6: Read throughput on a length-3 chain as the write Figure 7: Read throughput as writes increase (SKB object).
rate increases (500B object).

Experimental Design & Results

P, S - —a;—&—%—m—m—a B
o | _B—f"] E-0-B-8-5
3 $
. d
E o | A1 4
— (D
> /
8 /E]
Q
= O _]
E = 11}
= B /
D o 7
= & -
/D/ a
- A0 CR
o - B 1 o CRAQ
I T T T I
0 5 10 15 20
Writes/s

Figure 13: CR and CRAQ’s read latency to a local client
when the tail is in a distant datacenter separated by an RTT
of 80ms and the write rate of a 500-byte object is varied.

Strengths

Maximum read throughput scales with chain
length

Better read locality than CR

Allows clients to trade strong consistency for
nigher read throughput

Recovery protocols are simple and require small
amounts of coordination

Clean reads can continue during failure recovery

Weaknesses

* Write latency scales with chain length

* Limited comparison with other systems

- Comparison with CR might go differently with multiple
chains

- Should compare with other systems offering similar
guarantees

» Fail-stop Is a very strong assumption

- What happens during a network partition? Not even
majority can continue writing!

References

* Van Renesse, Robbert, and Fred B. Schneider.
"Chain Replication for Supporting High
Throughput and Avallability." In OSDI, vol. 4,
pp. 91-104. 2004.

* Terrace, Jeff, and Michael J. Freedman. "Object
Storage on CRAQ: High-Throughput Chalin
Replication for Read-Mostly Workloads." In
USENIX Annual Technical Conference. 20009.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

