

Chain Replication with
Apportioned Queries

Jeff Terrace and Michael J. Freedman, 2009

Problem

Design a durable object storage system with
strong consistency guarantees. Bonus points

awarded for high read throughput.

Definitions

● Object storage
– write(key,val)

– read(key)

● Strong consistency
– All reads/writes happen at an instant in time between

client request and acknowledgement

● Fail-stop servers
– Dead servers do no wrong

– Everyone can detect a dead server

Warmup: Primary/Backup
Replication

● Primary server handles all read/write requests
● On write request, primary first sends replicas to

backup servers, waits for acknowledgement,
then commits write.

● On primary fail
– Messy! Need to synchronize state between all

backups

Room for Improvement

● Backups can't be used to handle reads
– Fix: Send ACKNOWLEDGE messages to backups

signifying that a given write is complete

● Recovery from primary failure requires n-way
synchronization
– Fix: Impose a linear order on backups so that

backup i is ahead of backup i+1

CRAQ: Clean Reads

● When no writes are in progress, any node can
handle reads

CRAQ: Writes

On write(key,val),

1.Head propagates PREPARE(key,val,version#) message down the
chain.

2.Tail receives PREPARE and commits write.

3.Tail propagates ACKNOWLEDGE(key,version#) back up the chain

4.Upon receipt of ACKNOWLEDGE(key,version#), a node may commit
the corresponding new object version.

CRAQ: Dirty Reads

● While waiting for an ACKNOWLEDGE, redirect
read requests to the tail

● Only a version request is necessary!

CRAQ: Failure Recovery

● Only nodes at the splice site need to
synchronize state (cf. primary/backup)

● Reads may continue away from the splice site.

Chain Layout & Management

● ~10 nodes per chain, ~1000 nodes, ~10000 chains
● 2 levels for chain management

– Within a datacentre, use consistent hashing to map
nodes to chains

– Across datacentres, use manual layout or consistent
hashing

● Make use of a black box coordination service (e.g.
ZooKeeper) to maintain chain membership lists
and notify nodes of changes

Optimizations and Extensions

● Relaxed consistency
– Allow dirty reads (eventual consistency)

– Allow dirty reads with a time limit (bounded
inconsistency)

● Broadcast data, propagate metadata
● Broadcast acknowledgements
● Multi-object transactions for objects on the

same chain

Experimental Design & Results

● Compare single chain performance of CR and
CRAQ on Emulab over a 100MBit network

Experimental Design & Results

Experimental Design & Results

Strengths

● Maximum read throughput scales with chain
length

● Better read locality than CR
● Allows clients to trade strong consistency for

higher read throughput
● Recovery protocols are simple and require small

amounts of coordination
● Clean reads can continue during failure recovery

Weaknesses

● Write latency scales with chain length
● Limited comparison with other systems

– Comparison with CR might go differently with multiple
chains

– Should compare with other systems offering similar
guarantees

● Fail-stop is a very strong assumption
– What happens during a network partition? Not even

majority can continue writing!

References

● Van Renesse, Robbert, and Fred B. Schneider.
"Chain Replication for Supporting High
Throughput and Availability." In OSDI, vol. 4,
pp. 91-104. 2004.

● Terrace, Jeff, and Michael J. Freedman. "Object
Storage on CRAQ: High-Throughput Chain
Replication for Read-Mostly Workloads." In
USENIX Annual Technical Conference. 2009.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

