Noah Apthorpe

Department of Computer Science
Princeton University

October 14th, 2015

Noah Ap — CloneCloud

Motivation

Motivation

Mobile applications are limited in computation speed,
storage capacity, network communication rate, and
available power
Migrating portions of applications to the cloud can
improve resource usage and overall performance
However, most mobile/cloud applications are either
Monolithic processes with minimal cloud support
Client/server paradigms with nearly all computation on
cloud
Tailored to specific mobile/cloud resources
Goal: Automatic fine-grained application migration
(partitioning) based on mobile/cloud conditions at
runtime

Noah Apthorpe — CloneCloud

Overview

Overview
System Model

Phone Phone Cloud

Process Process Clone
< » @ VM

Process

-+ »

I
|
|
0S '+° 0S 0S
|

HW HW Virtual HW
VMM
(a) Single- AW
machine L -
computation)| (b) Distributed computation

Figure 1. CloneCloud system model. CloneCloud trans-
forms a single-machine execution (mobile device computa-
tion) into a distributed execution (mobile device and cloud
computation) automatically.

Noah Apthorpe — CloneCloud

Overview

Overview
Prototype Architecture

Phone Clone VM
—| Application Application =
ﬁ App.|Migration Migration|App. & ||[Partition
oy H
s W™ Proﬁller Profiler | VM |[@ ||| Analyzer
0 oS
05 Virtual HW__['Virtual AW
= VMM
HW

Figure 2. The CloneCloud prototype architecture.

Noah Apthorpe —

Partitioning

Partitioning

Overview

Which methods should be migrated to the cloud?
Occurs off-line and without programmer interaction.

Results in a database of possible partitions optimized for
varying execution conditions

Network latency
Mobile CPU speed

and different objective functions

Execution time
Power consumption

A specific partition is selected at runtime

Noah Apthorpe — CloneCloud

Partitioning

Partitioning

Overview

3 step partitioning implementation

Static analysis
Which possible partitions are legal?

Dynamic profiling
What behavior (execution time and power consumption)
do application methods exhibit when run on the device
and on the cloud

Optimization
Which legal partition optimizes the objective function(s)
given behavior profiles

Migration Partitioned
constraints binary

Static
Analyzer

Optimization

A \icat\or;
e Solver

binary

location-

A

profmng\ Dynamic (osl-annqated
inputs Profiler executions

Figure 3. Partitioning analysis

framework.

Partitioning

Partitioning

Static Analysis

Control-flow graph created from
code analysis
Methods unable to be migrated
are annotated
Methods accessing
device-specific features (e.g.
GPS or other sensors)
Methods sharing native
(non-application VM) state

Annotations are propagated
upstream in graph

Transitive calling relationships
prevent nested migration

dass C {
voida () {
. if () {b(); <();} [Chenty | Mobi\e‘ Ch.entry |
void b{) { [che] 9V cpam]
} /] lightweight
void) ¢ [Emy] i1
T - .centry i [Coenuy |
. + /] expensive LC\OHE
void main () { [Ceait | L[Ceext |-
Cc; cal);
(a) program (b) static control- (c) partitioned
flow graph graph

Figure 4. Anexample of a program, its corresponding static
control-flow graph, and a partition.

Noah Ap

Partitioning

Partitioning

Dynamic Profiling

Application executed multiple times on device and on the
cloud with randomly chosen arguments and Ul events
Profile trees of per-method costs (execution time and
power usage) generated for each execution

Power costs estimated from (CPU on/idle, Display
on/off, network on/idle) tuples

Computation cost C,(i,loc) and
migration cost C(7) calculated t P
for each method invocation i. 1 af /:&tf"'/\

C.(i,cloud) = residual cost of <k i U{

X A main

main

. t L bt/ et/ st/
method 7 on the cloud . : /> .
N o ABX N
CS (Z) = cost to b/ NS ANE AN/
suspend/resume thread + cost (a) trace (b) profile tree
to transfer thread Figure 5. An example of an execution trace (a) and its

corresponding profile tree (b). Edge costs are not shown.

Partitioning

Partitioning

Optimization

“Optimally replacing annotations in 7" with those in 77,
so as to minimize the total node and weight cost of the
hybrid profile tree”

T = profile tree from executions on device

T’ = profile tree from executions on cloud

Control flow graphs from static /main
analysis merged with possible N /
hybrid trees to find optimal legal /\] ™
partitions ERNEN (mg}
Optimization problem solved with l / P i
integer linear programming solver B T / T

L A AN "69

Noah Apthorpe — CloneCloud

Distributed Execution

Distributed Execution

Migration Overview

Partition selected from database
based on runtime conditions

Methods instrumented with
migration and re-integration
points

Migrator thread suspends,
packages, resumes, and merges
thread state

Node Manager coordinates clone
provisioning/synchronization and
device/cloud communication

Migration at thread granularity
allows true device/cloud
parallelism

- N ~
Application ‘ Application

[Clone | |’ Clore

v I Vv m—
\\J]lqraml)| |\7I IIQIatOI./\
lappvi \ApprH’s‘)
. A

Node

w,/l-l\qrator\:
= v

T
{ Migrator

p -/
4

Manager

(Tigrator)
(M |c|rat0r/
App-VM__

Mobile Phone

)
/H%L\
(M |c|mtor_)
\App-vM)

Clone

Figure 6. Migration overview.

Distributed Execution

Distributed Execution

State Transfer Details

Migrator thread captures
execution stack frames

. Reference | MID | CID
relevant data in process heap mol | L [ol
0x02 2 null \ 2
register contents at migration o0 [5 [ol [N,
g. & (1) Mobile Phone ~ \7? Reference [wio [1D
pOInt G2 2]} cCed
. . 0x23 3 13
by crawling object references Gy wobte phone FA—SE T
. Reference [MID | €ID | &
Captured state marked in memory oo [1 n / (2) Clone
and sent to cloud 5 TS 15
0x04 4 14
0x05 5 15

Object mapping table created to
monitor object modification
during remote execution

Figure 7. Object mapping example.

Device state synchronized with
state received from cloud at
re-integration resume and merge

Evaluation

Evaluation
Speedup Opportunity
Application Input Phone Exec. | Clone Exec.
Size (sec) (sec)
Mean (std) | Mean (std)
VS 100KB 6.1 (0.32) 0.2(0.0D
IMB 59.3 (1.49) 2.2(0.0D
10MB 579.5(20.76) | 22.5(0.08)
IS 1 img 22.1 (0.26) 0.9 (0.07)
10 img 212.8 (0.44) 8.0 (0.03)
100img | 2122.1 (1.27) | 79.2(0.44)
BP depth 3 3.3 (0.10€) 0.2 (0.01)
depth 4 52.1 (1.45) 1.8 (0.07)
depth 5 3027 (3.76) | 10.9(0.19)

Table 1. Execution times of virus scanning (VS), image
search (IS). and behavior profiling (BP) applications, three
input sizes for each. For each application and input size. the
data shown include execution time at the phone alone and
execution time at the clone alone.

Evaluation

Evaluation

Execution Time Analysis

10MB
T 700
I 0
2 E 4 400
£ 3 300
E %
a4 0 oy 70
Phone CC-WiFi €C-3G6 Phone CC-WiFi CC-3G6 Phone CC-WiFi CC-3G
1image 10images 100 images
- 5 T : T 250 2500 : : :
T 2w " 200 2000
» £ s 150 1800
£ w0 100 1000
g 5 50 500
Yoo 0 0
Phone CC-WiFi ccac Phone CC-WiFi CC-ac Phone CC-WiFi €C-3G
Depth 3 Depth 4 Depth §
- 60 . , ; 350 , . :
®
a £
|5
I

Phone CC-WiFi CC-3G Phone CC-WiFi cc36 Phone CC-WiFi cC36

Figure 8. Mean execution times of virus scanning (VS), image search (IS), and behavior profiling (BP) applications with
standard deviation error bars, three input sizes for each. For each application and input size, the data shown include execution
time at the phone alone, that of CloneCloud with WiFi (CC-WiFi), and that of CloneCloud with 3G (CC-3G). The partition
choice is annotated with M for “monolithic™ and O for “off-loaded,” also indicating the relative improvement from the phone-
alone execution.

Evaluation

Evaluation

Power Consumption Analysis

_ 100KB MB 10MB
= 6 500
5 400
» 4
300
> 3
5 200
> 1 100 o o
g o o 12x 56
w Phone CC-WiFi CC-36 Phone CC-WiFi CC-3G Phone CC-WiFi Ccc-36
_ 1 image 10images 100 images
= 0 T T 180 T T T 1800 T T T
16 W
n 12
- 8
> 4
e g
w Phone CC-WiFi €C-3G Phene CC-WiFi CC-3G Phone CC-WiFi CC-3G6
_ Depth 3 Depth 4 Depth 5
z 60 T T 250 T T
2 50 o 200
s 0.8
o £ 40 b 150
[I 30
8 20 o p 100 o
= 10 20x] 50 o 38
5 0 0 8.8x
g
w Phone CC-WiFi CC-3G Phone CC-WiFi CC-3G Phone CC-WiFi CC-3G

Figure 9. Mean phone energy consumption of virus scanning (VS), image search (IS), and behavior profiling (BP) applications
with standard deviation error bars, three input sizes for each. For each application and input size, the data shown include

execution time at the phone alone, that of CloneCloud with WiFi (CC-WiFi), and that of CloneCloud with 3G (CC-3G). The
partition choice is annotated with M for “monolithic” and O for “off-loaded,” also indicating relative improvement over phone-
only execution.

Limitations

Limitations

& Future Directions

No distributed shared memory!
methods sharing memory must be co-located
threads accessing memory marked as “migrated” block
until re-integration

Cloud execution trusted implicitly

Dynamic profiling only tests a sample of input space
No migration at native method boundaries

Can multiple threads be offloaded at once?

Requires modifications to application VMs (e.g. Android
Dalvik VM)

Platform-specific

i0S777
No figure comparing CloneCloud apps to client/server
versions

Noah Apthorpe — CloneCloud

Discussion

Discussion

Thoughts or questions?

	Motivation
	Overview
	Partitioning
	Distributed Execution
	Evaluation
	Limitations
	Discussion

