Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage
System

Douglas B. Terry, Marvin M. Theimer, Karin
Petersen, Alan J. Demers, Mike J. Spreitzer and Carl
H. Hauser

SOSP 1995

Motivation

Users working concurrently can introduce conflicts for collaborative

applications

Unreliable network connections and high per-minute connection costs mean it
Is impractical to have continuous connections

Goal: balance the realistic expectations of poor network connectivity with the
desire to maintain weakly consistent, replicated data

Solution: Bayou

Application-specific determination of how to detect and resolve conflicts
o Accomplished via dependency checks and merge procedures

Maintain two states of an update: tentative and committed

Manage the states to determine when an update can be changed from
tentative to committed

Designed for non-real-time collaborative applications (e.g. meeting room
scheduler, mail databases, etc.)

Ensure that replicas will be eventually consistent

Application Examples

e Meeting room scheduler

(@)

For a given room, any time for a meeting for that room can be assigned to no more than one
person

User is presented current state of scheduler with respect to his/her copy of the room schedule
(which may be out of date if, e.g., it is a local version that has not recently been updated)

As the connectivity allows, the schedule is periodically re-read, and any are updated on user’s
graphical user interface

e Bibliographic database

(@)

(@)

(@)

Users add papers to the database as they are found
Must assign unique key to each paper

Keys are tentative until committed, since there could be a conflict, and uniqueness of keys
must be ensured

Cannot expect to maintain persistent connection with library network due to, e.g. student
hackers

Layout of Bayou's System Model

Data collection fully replicated among servers

Applications communicate with servers through Bayou API
o Basic operations: read and write

Access to one server is enough for client to perform read/update operations
Bayou write operations contain additional information for how to deal with
conflicts

Each write has a globally unique WritelD

Storage system maintains ordered log of writes

Writes are passed from one server to another via pairwise contacts (“anti-
entropy”)

o Theory promises that, if some assumptions about no servers being permanently partitioned
are met, then write will eventually make it to every server

Dealing with Conflicts

e How conflicts are managed is application-specific

e Dependency checks
o Used to determine if write-write conflict occurs

o For each write, a query is associated with it which is checked against current state of
connected server
o If database evaluates SQL-like query as holding true, this indicates a conflict
m Leads to merge procedure
e Merge procedure
o Also left as a choice of developer
o Main objective: when faced with a conflict, how to resolve it
o Room scheduler example: provide a list of multiple preferred times

Bayou_Write{
update = {insert, Meetings, 12/18/95, 1:30pm, 60min, “Budget Meeting"},
dependency_check = {
query = “SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 2:30pm AND end > 1:30pm"”,
expected_result = EMPTY],
mergeproc = {
alternates = {{12/18/95, 3:00pm], {12/19/95, 9:30am}};
newupdate = {};
FOREACH a IN alternates |
check if there would be a conflict
IF (NOT EMPTY (
SELECT key FROM Meetings WHERE day = a.date
AND start = a.time + a0min AND end > a.time))
CONTINUE;
no conflict, can schedule meeting at that Hme
newupdate = {insert, Meetings, a.date, a.time, 60min, “"Budget Meeting”};
BREAK:
I
IF (newupdate = {}} # no alternate is acceptable
newupdate = {insert, ErrorLog, 12/18/95, 1:30pm, 60min, “Budget Meeting"|;
RETURN newupdate;}

Figure 3. A Bayou Write Operation

Maintaining Consistency

Eventually consistent
o Guarantees that all servers eventually receive all writes

When write is first accepted, marked as tentative
o Write is associated with timestamp

Server maintains log of writes, ordered by timestamp
o Committed writes are ordered before tentative writes
o Global order of tentative timestamps ensures agreement for isolated cluster of nodes
o In some cases, tentative writes need to be undone and re-executed

Need to determine write is stable so that it can be committed
o Accomplished using a primary commit scheme
m One server, designated as primary, has the authority to commit updates
m Desirable because requiring majority quorum is difficult in face of connectivity issues
m If primary fails, client can still perform useful read and write operations
e In this case, writes just remain tentative

Implementing the Storage System

Design of Bayou leads to certain requirements for the structure of the storage

system
Write log

o Contains write obtained by a given server
o Writes are in their global committed or tentative order (based on timestamp)

Tuple store
o Implemented as relational database
o Provides support for SQL-like queries
o Interesting property: maintains two views of data
m Committed view: only shows committed writes
m Full view: shows both tentative and committed writes

Undo log

o Allows server to undo effects on tuple store

EEr e o
’
I

Timestamp VYectors £

Write Log .-~
HA ~ Committed
T .. Tuple Store (checkpoint]
e\ —
Takla 1
Tabie 2_|
1
s Tantative 1
Tabhe 3
T ! c—) 1
I 1 I i |
-~ g '
v In Memory L ~ On Stable Storage |

Figure 4. Bavou Database Organization

Access Control

Because of poor network connectivity assumption, cannot rely on trusted

central authentication server

Instead, mutual authentication is implemented

o Based on public-key cryptography

o Uses a single trusted signing authority to sign all certificates
Authorization is granted for entire data collection

o Can be revoked if it is found that certificate has been revoked

Performance

e Size of storage increases as number of tentative writes increases

o Primarily attributed to increase in overhead cost of access control certificate for tentative
writes

e Execution time for Bayou server to undo/redo all tentative writes
o Cost of redoing is nearly constant time

e Performance of operations between client and server

o In case of conflict, write is not unique
m Thus, requires additional time for reassignment within merge procedure

Table 1: Size of Bayvou Storage System for the Bibliographic Database with 1550 Entries
(sizes in Kilobytes)

Mumber of Tentative Writes 0 50 100 300 1324
(none) {all)
Write Log 9 129 259 1302 4028
Tuple Store Ckpt 396 JE4 371 269 1
Total 405 513 B3l 1571 4029
Factor to 36XK bibtex source 1.1 .30 1.71 4.27 10.95

Table 2: Performance of the Bayou Storage System for Operations on Tentative Writes in the Write Log
(times in milliseconds with standard deviations in parentheses)

Tentative Writes 0 50 100 300 1550
Server running on a sun SPARC20 with Sunos

Undeo all] 31 ()] 70 (203 | 330 (155 Hah (193}
(ave. per Write) .62 g &4 546

Redo all 0 237 (H3) 61l (302) | 2796 (830) TEIE (10%4)
(ave. per Write) 4.74 6.11 5.59 5.05

Server running on a Gateway Liberty Laptop with Linux

Undo all i 47 (33 104 (7) | 48z (15 1288 (62}
(ave. per Write) 94 1.04 94 B3

Redo all] oz (81 T (134) | 3504 (264) Q920 (294}
(ave. per Write) 6.04 T.05 7.0 6.4

Table 3: Performance of the Bayou Client Operations
(times in milliseconds with standard deviations in parentheses)

server Sun SPARC/Z0 Gateway Liberty Sun SPARCRZ0
Client SAME as server SAME as server Crateway Liberty
Bead: 1 wple 27 (19 38 (3} P {4}
100 tuples 206 {20 358 (28) 244 (10)

Write: no conflict 159 {32) 212 (29) 177 (22)
with confiict 207 (37 372 (17) 223 (40)

Strengths

Eventual consistency guarantees, via pairwise “anti-entropy” communication
Flexibility for how application developers manage conflict
Managing conflict occurs at granularity of per-iteration

Design is such that servers do not need nearly perfect synchronized clocks
o Good for unreliable networks

Weaknesses

Application-specific conflict detection and resolution means more work for the
application developer, and is possibly prone to human error

Potential for cascading conflicts (a new write depends on a previous conflict
write, etc.)

o Mitigated by circumstances of application, e.g. if application is not continuously subjected to

(possibly conflict-inducing) writes

Conclusion

Bayou provides a weakly consistent storage system for mobile applications
connecting via an unreliable network

Conflicts are resolved (or, if unresolved, written to an error log to be dealt with
by hand) at the granularity of each individual write

Bayou maintains both a full and a committed view of the data

Best suited for situations with low likelihood of conflicts occurring

Questions?

