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Abstract

People sometimes need to communicate directly with one another
while concealing the communication itself. Existing systems can
allow users to achieve this level of privacy in the wide-area Internet,
but parties who are in close proximity (e.g., a public square or
coffee shop) may want a lightweight communications channel with
similar properties. Today, covert exchanges in local settings typically
require the exchange of physical media or involve other forms of
direct communication (e.g., conversations, blind drops); most, if not
all, of these exchanges are observable: in other words, even if the
message exchanges are confidential, they are not covert or deniable.

We construct a local communications channel that is unobservable
to everyone except the parties exchanging messages. To do so, we
take advantage of the ubiquitous phenomenon of packet corruption
in wireless networks, which provide deniable cover for message
exchange between parties within radio range. The communicating
parties use a shared secret to differentiate truly corrupted frames
from those that hide messages; to other parties, messages appear as
corrupted wireless frames. We tackle the challenge of designing the
observable corruption patterns to ensure that an observer can neither
link sender and receiver of a hidden message (unlinkability), nor
determine so much as the existence of any hidden message (denia-
bility). We present the design and implementation of a prototype
system that achieves these properties using off-the-shelf 802.11 hard-
ware, evaluate its performance, and assess its resilience to various
attacks.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design:
Network Communications, Wireless Communication

General Terms: Algorithms, Design, Experimentation, Security

Keywords: censorship; wireless; covert channels

1 Introduction

The need for private communications is perhaps greater than ever
before. People have long needed to keep the communications among
themselves private, but, increasingly, they may want to conceal not
only the messages that they exchange, but also with whom they
are communicating—or even the fact that they are communicating
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at all. This latter type of communication is said to be not only
confidential and anonymous, but also deniable, in the sense that
despite exchanging messages, participants can plausibly deny that
any such exchanges ever took place.

In this paper, we consider scenarios where people congregate
in common public spaces and want to communicate with others
in that same space, yet wish to keep their communications both
confidential and deniable. We call such a message exchange a
deniable liaison. Moreover, it may be the case that one or more
parties to the communication wish to remain anonymous. Consider,
for example, a covert message exchange between a spy and her
handler in a coffee shop, a whistleblower in an office environment,
or a group of activists who wish to covertly organize a public protest.
These scenarios require local communication that is confidential,
anonymous, and deniable.

Covert agents have long employed a wide range of techniques in
these scenarios, but they tend to be either limited in bandwidth (e.g.,
a necessarily brief, clandestine conversation) or interactivity (e.g., a
“dead drop” of a physical message or storage device). Indeed, any
real-world interaction bears some risk of observation, and most are
not readily applicable to broadcast scenarios. Hence, a variety of
anonymous electronic communications systems have emerged to
provide important—and often widely used—communications chan-
nels, but most focus primarily on wide-area communications (e.g.,
Tor [7], which supports communications between Internet-connected
end hosts that are often separated by great distances) where denia-
bility can sometimes be provided by hiding in a very large crowd
of Internet citizens. In the circumstances we consider, a wide-area
anonymous communication system not only introduces unnecessary
complexity and latency, but exposes the parties to additional risk by
requiring them to send their messages over the wide-area Internet.
We argue that such schemes are not always available due to the
widespread Internet arms race of blocking such services and instead
a powerful local scheme can be used which leverages the broadcast
nature of wireless communication. We argue that these settings call
instead for an anonymous, confidential, deniable communications
system for the local area that takes advantage of communications
devices that users already own (e.g., laptops, smartphones, tablets),
without requiring that covert messages traverse the wide-area Inter-
net.

We introduce DenaLi, a lightweight communications system to
support deniable liaisons. DenaLi makes it possible for parties to
exchange messages with one another in a local setting, without
ever exposing with whom they are communicating, or even the
fact that they communicated with a local party at all. Our system
takes advantage of the ubiquitous deployment of 802.11 wireless
communications networks and, in particular, the pervasive nature of
corrupted frames on these networks. Frame corruption is a common
phenomenon that inevitably results from a variety of factors, ranging
from colliding transmissions to a noisy communications medium.
Traditionally, corrupted frames are viewed as a source of inefficiency,
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as they require the sender to retransmit the original frame; yet, in our
case, they provide an opportunity to hide communications. DenaLi
creates spurious corrupt frames by injecting covert messages into
frames carrying cover traffic directed toward innocuous destinations.
Since these frames are indeed corrupt, they will not be forwarded by
the access point to their apparent destination. Instead, other nodes in
the WiFi network that overhear the frame and posses the appropriate
secret key can extract and decrypt the injected payload.

DenaLi is conceptually simple, and achieving anonymity and con-
fidentiality is easy enough—any reasonable encryption technique
will suffice. The challenges entail designing the communications
channel so that the resulting stream of corrupted frames is deniable,
which requires both understanding (and modeling) the properties of
bit errors in an 802.11 wireless communications channel and appro-
priately modeling the attacker. To do so, we build on previous work
that studies bit-error characteristics in the wireless medium, and per-
form our own measurements to understand these error characteristics
in various settings and for different encodings. We develop a modi-
fied 802.11 wireless driver that modulates the covert message over
a stream of cover traffic in such a way that the resulting sequence
of corrupted frames mimics the existing pattern of corruption in the
wireless channel. DenaLi traffic matches naturally occurring wire-
less corruption both in terms of the frequency of corrupted frames
and the bit positions within the frames that are corrupted.

DenaLi provides deniability in a setting where an adversary can
observe wireless communications in the local area, but cannot get
very close to the suspected sender. An adversary who observes trans-
missions sufficiently close to the sender could infer the presence
of a hidden message channel due to the (relatively) high level of
packet corruption near the point of transmission. We envision that
in typical cases an adversary would not be targeting an individual
sender but would rather only be in a position to monitor a group
of users (e.g., in the midst of a larger group, perhaps close to the
access point). In these cases, we demonstrate through empirical
measurements that distinguishing DenaLi transmissions from nat-
urally occurring corrupted wireless frames can be made arbitrarily
difficult for message rates that can easily support the exchange of
short covert messages. We show through extensive controlled exper-
iments with real wireless chipsets that when we closely match the
frame error rate and bit error distributions of the existing wireless
channel, DenaLi achieves a bit error distribution pattern that is indis-
tinguishable from naturally occurring errors. To achieve this level of
deniability, throughput is quite low (sufficient for exchanging only
small messages or “tweets”), but the sender can, of course, accept
less deniability in exchange for higher throughput, a tradeoff that
we explore in our evaluation. Traffic that the user is already sending
as part of normal communication can provide the necessary cover
traffic, which means that DenaLi does not need to create additional
cover traffic but can rather hide its messages in the user’s existing
traffic.

Our work presents several contributions. First, we recognize that
the increasing need for anonymous, deniable communications in
settings where parties are physically close to one another calls for
a new class of communications tools. Second, we observe that
in these settings, the ubiquity of other WiFi communication (and
the corresponding wireless frame corruption) can serve as useful
cover to conceal communications. Third, we define the notion of
deniability in this context and design a modulation scheme that
achieves deniability by matching the corruption properties of the
deniable messages to that of the cover traffic. Finally, we implement
and evaluate a prototype system based on this design.

The rest of the paper proceeds as follows. Section 2 surveys
related work in anonymous communication, detection of covert
channels, and wireless errors and corruption. Section 3 defines our
expected usage scenario and outlines our basic approach, threat
model, and design goals. Section 4 describes the design of the
DenaLi communication channel in detail. Section 5 describes our
prototype implementations and explains the changes we made to the
wireless driver to enable DenaLi. We evaluate DenaLi in Section 6,
discuss limitations and future work in Section 7, and conclude in
Section 8.

2 Related Work

We first survey related work on related anonymous and deniable
communications systems. We then discuss various studies of wire-
less interference and channel properties to design DenaLi.

2.1 Anonymous Communications

DenaLi’s design is inspired by Rivest’s proposal for chaffing and
winnowing, whereby a sender disguises the real message intended
for the recipient by including additional “chaff” on the same chan-
nel [22]. With knowledge of a shared secret, the recipient can
identify and discard the chaff, leaving only the message in question.
Unlike Rivest, however, we further encrypt the message to make
it easier to efficiently inject into the chaff without disturbing the
statistical properties of the aggregate.

DenaLi is the first system to provide a point-to-point deniable
communication channel in a WiFi network using commodity hard-
ware. Previous work has sketched systems that use corrupted wire-
less frames to create a covert channel over 802.11 frames [19, 25]
but no previous work has moved beyond paper designs. Calhoun
et al. designed and simulated a covert channel based upon varying
the link rate [2]. This work is purely simulation-based and develops
neither a working prototype nor a communication protocol for ex-
changing messages. None of the previous work analyzes deniability
in the presence of an adversary that can monitor channel quality.

Many existing anonymous communications systems aim to pro-
vide various levels of anonymity in the wide area. One of the most
widely used anonymous communications systems is Tor [7], which
allows communicating parties to establish anonymous communi-
cations channels via a layered encryption technique called onion
routing [10]. Users of Tor establish circuits to communicate with
each other anonymously in the wide-area. Tor provides anonymity
but not deniability, in the sense that users of Tor can conceal who
they are talking to, but not the fact that they are communicating
using Tor (in fact, Tor is blocked in many countries outright). De-
naLi’s focus is different than Tor’s: it aims to enable anonymous
and deniable communication in settings where the communicating
parties are physically close to one another.

DenaLi bears similarity to other censorship circumvention sys-
tems that aim to achieve deniability and covertness in addition to
confidentiality and anonymity. Two such systems that operate from
end systems are Infranet [9] and Collage [1]. These systems al-
low participants to establish communications under the cover of
innocuous Web traffic: the censor only sees Web requests that are
statistically indistinguishable from normal user behavior, thus pro-
viding the user with an important degree of deniability, in addition
to confidentiality. Other recent systems such as Telex [28], Cirri-
pede [13], and Decoy Routing [15] aim to achieve similar levels of
deniability by deploying infrastructure in the core of the network



rather than at end systems. Briar [23] provides a secure, point-to-
point anonymous encrypted communications channel between users’
devices; like DenaLi, Briar enables point-to-point communication,
but Briar does not provide deniability.

2.2 Detection

Others point out that covert channels must be detectable under some
adversarial model, because the message channel introduces some
statistical deviation to the underlying natural distribution. (In other
words, there is no such thing as “perfect steganography” that is anal-
ogous to perfect security for encryption in practice.) Provos et al.
demonstrate that statistical steganalysis is possible on JPEG images
based on careful analysis of the entropy of the resulting compressed
images [21]. Previous work evaluates two methods for detecting the
anomalies in traffic distributions generated by covert channels (such
as the deviation induced by DenaLi) by measuring the variation in
the number of packets with invalid checksum value [19] (this analy-
sis is based on simulation.) As in any mechanism that perturbs the
underlying natural distribution of the cover traffic, DenaLi could be
detected if the adversary both can observe the distribution generated
by DenaLi, and is in a position to measure the deviation. We explain
in Section 3 why we believe this to be generally difficult in the case
of DenaLi’s most likely deployment scenarios.

DenaLi provides a different type of deniability than deniable
encryption [5], and therefore presents a different detection challenge.
DenaLi aims to conceal the existence of communication, whereas
deniable encryption explicitly admits he presence of communication:
the adversary is provided with an alternate key to decode the cipher
text to convert it into a different plaintext than the actual one.

2.3 Wireless Errors and Corruption

One of DenaLi’s goals is to transmit corrupted wireless frames
whose statistical properties match those that would occur in a normal
wireless communications channel. The properties of a wireless
medium can be both highly variable and difficult to model. In
particular, the channel properties depend on a host of complex
and time-varying factors ranging from radios to bitrate adaptation
schemes. Our goal is not to develop a model for wireless channels.
Rather, if the channel’s error properties can be observed, we can
develop a communications channel using corrupted wireless frames
as cover traffic in a way that mimics the properties of the errors that
naturally occur.

Since errors have plagued wireless communication since its in-
ception, there are a number of studies that focus on the nature of
such errors in wireless frames. The Maranello study [12] measures
erroneous frames in an 802.11 LAN; their findings corroborate ear-
lier work [14] that observes that bit errors in wireless frames occur
in clusters, as the error process is not memoryless. Han et al. also
observe that the probability of error increases with the bit position
in the frame (i.e., bits further into the frame are more likely to be
corrupted) [11]. DenaLi applies these observations by injecting bit
errors into frames in groups—as opposed to one bit at a time —at
least 100 bytes into any frame.

3 Problem Description

We now explore the scenario where we believe that DenaLi is most
likely to be used and the threat model, in terms of the capabilities of a

Figure 1: Basic communication setup.

typical adversary who might try to discover or thwart communication
with DenaLi.

3.1 Usage Scenario and Basic Approach

DenaLi is designed for settings where the communicating parties
are within wireless range of one another and, hence, can hear one
another’s wireless transmissions to a local access point. We further
presume that a DenaLi sender has some number of pre-existing
connections to innocuous destinations on the Internet which will
provide cover traffic for our covert communication channel. Fig-
ure 1 shows such a basic setup. An adversary may be positioned
anywhere in the wireless network and is able to eavesdrop on any
transmissions by the participants. DenaLi does not employ or re-
quire link-layer encryption schemes (like WEP or WPA) for its
confidentiality guarantees.

In this scenario, the sender, Alice, sends traffic to her usual set
of wide-area Internet destinations via the access point. Due to
the nature of the wireless channel, some frames may experience
corruption, and the access point will thus discard those frames. Alice
will subsequently retransmit these frames until they are successfully
received by the AP and forwarded on. But, if Alice and Bob share
a secret, Alice can inject additional, deliberately corrupt frames,
such that the frames corrupted by the wireless channel serve as
chaff to conceal the fact that some of the corrupt frames contain a
hidden message. If Alice and Bob share a secret, Bob can determine
which corrupted frames are chaff and can retain only those corrupted
frames that contain the hidden message.

Corrupt frames naturally result from various wireless effects, in-
cluding low signal-to-noise ratio (SNR), broadband interference,
hidden terminals, and multi-path fading, which depend on the rela-
tive position of the transmitting device and nearby wireless devices,
materials of nearby objects, and other unknown factors. Because the
causes of corruption are diverse and time-varying, detecting the hid-
den messages with certainty requires either knowledge of the secret,
or the ability to monitor frame corruption rates and compare the
measured distribution to the corruption rates that would be expected
as a function of both space and time.



To construct a profile that closely matches that of a normal wire-
less channel, we exploit two important observations about the cor-
ruption of packets in a broadcast medium, particularly the 802.11
protocol. First, packet errors in packets occur in chunks of bytes [12],
not as individual bits; most of the chunks of errors are about 400
bits, and occurrence of larger chunks of errors is not very usual. This
phenomenon might occur as a result of interference, or the loss of
synchronization. The second observation is that the bit errors inside
wireless frames have specific patterns [11]; for example, bits that
are farther from the start of the frame will experience an increasing
probability of corruption.

3.2 Threat Model

The adversary’s primary goal is to detect the presence of hidden
communication on a shared wireless medium. If the adversary is
able to further determine which transmitted frames contain hidden
communication, it may be able to use existing techniques to deter-
mine the identity of the sender [8]. The adversary’s main capability
is to listen to wireless frames within its radio range.

We assume that the adversary has finite computation resources
and a finite number of nodes that it can use to monitor the wireless
channel. In our prototype, we assume the adversary has only one
node with which it can monitor and has knowledge of at least one
party which may be communicating using DenaLi. In a practical
scenario, the adversary might know the identity of the sender but not
his MAC address. He would still have to scan the channel and apply
techniques to identify the sender’s device, which might be hard in
dense public places where signal strength of device varies consid-
erably due to the commotion [27]. If the adversary has previous
knowledge about which parties may be using DenaLi to communi-
cate, it could position its radio(s) close to one of the senders and
attempt to determine if the sender’s wireless interface was sending
corrupted frames at a rate that exceeds the typical rate at which a
wireless radio emits corrupted frames. We assume that the adversary
remains at a sufficient distance that it cannot conclusively determine
that some frames are already corrupt when they are transmitted by
the sender; rather, it can only monitor the frame corruption rate.
As long as the adversary is sufficiently far away, the sender can
always make his channel worse by staying far away from the public
access point, thereby legitimately retransmitting at a higher rate than
normal.

Even without knowledge of communicating parties, a stronger
adversary can monitor and collect wireless transmissions from multi-
ple independent locations in the network and run statistical analysis
on the collection of captured traffic. In these cases, the adversary
might be able to determine that the profile of bit-error corruption
for certain nodes in the network does not match the corruption pro-
file for other senders, or that the frame corruption profile does not
change with increasing distance from the sender as one might expect.
Such an adversary might be able to perform an analysis of error
patterns with a tool such as Jigsaw [3], but even with the benefit
of multiple observation points, if the distributions are matched ap-
propriately, the perturbations that DenaLi introduces should still
provide deniability for senders. Moreover, a global adversary, i.e.,
one that can monitor at multiple locations in the wireless network—
but not the sender or receiver—does not necessarily have a better
chance at detecting the presence of hidden communication than a
local adversary who only has one monitoring point. Although the
ability to observe transmissions at multiple locations provides the
opportunity to observe corruption patterns of the same packet at mul-

tiple locations, these observations still do not allow the adversary to
ascertain what bit errors would look like at the exact sender and re-
ceiver locations [17]. Previous work suggests that bit error patterns
within corrupted frames will differ depending on the adversary’s
location [18].

In our empirical evaluations and security analysis (Section 6), we
assume an adversary who can observe all the corrupted frames from
a single location in the network. We note that even if an adversary
targets a particular sender (e.g., based on previous knowledge), the
sender can always move away from a suspected adversary or main-
tain enough mobility to reduce the likelihood of being monitored at
close range. (Indeed, previous work shows that simply rotating the
communication device can dramatically impact the channel qual-
ity [27].) Therefore, we believe that it is extremely unlikely that
an adversary could successfully target a sender and successfully
monitor the sender at close enough range for an extended period of
time without tipping off the sender.

3.3 Design Goals

We aim to develop a covert channel with a variety of properties, in
addition to the standard properties of confidentiality and covertness.
Undetectability says that the adversary cannot detect the presence
of any messages. Deniability is a slightly weaker property that says
that even if the channel is detectable, the adversary cannot determine
with non-negligible probability that a particular user or group of
users is exchanging messages. Unlinkability says that an adversary
may be able to detect the presence of communications, but cannot
link the sender of a message with its receiver. Robustness says that
the adversary should not be able to disrupt the channel.

DenaLi technically does not achieve strict undetectability, since
the process of sending a message does perturb the wireless channel
from its original state. We design the resulting bit error profile to be
statistically similar to a normal profile, however, making it difficult
for an adversary to determine with certainty that the channel has
been perturbed. Because frame corruption is a random process that
is itself based on a non-stationary distribution (e.g., it is affected
by a variety of factors, ranging from the presence of other senders,
to changes in obstructions such as people and doors, to the user’s
wireless radio, to physical properties of the air), we can perturb the
corruption profile of the channel without allowing the adversary to
determine that a sender is definitely sending a hidden message. In
this way, we achieve deniability.

Independently, DenaLi achieves unlinkability because even if the
adversary could detect the presence of additional corrupted frames,
without having the key that Alice and Bob share, the adversary
cannot determine that Bob is the intended recipient of the additional
corrupted frames. In fact, by having multiple participants share a
group key, DenaLi can be used to surreptitiously broadcast a hidden
message.

Finally, DenaLi achieves practical robustness by virtue of the fact
that an adversary cannot easily selectively disrupt the communi-
cation of the wireless frames containing the hidden message. An
adversary could jam the entire wireless channel, but doing so would
disrupt communication for legitimate traffic as well.

DenaLi does not rely on 802.11 encryption standards such as
WEP and WPA to achieve confidentiality, as we assume that many
adversaries may be powerful enough to either (1) join the channel
with a known WEP or WPA2 keys (e.g., in the case where the
adversary is the network administrator, such as in a public square or
a coffee shop); or (2) break the WEP encryption or WPA2 encryption



Figure 2: Injection of additional corrupted frames via a virutal network interface (implemented as a Linux TUN device).

Figure 3: Process of injecting corrupted frames at the sender; the receiver
performs the reverse of this process.

using known techniques. Instead, DenaLi provides confidentiality
by encrypting the message contents before injecting them into the
corrupted frames.

4 Communications Channel

This section describes the DenaLi design in more detail. The basic
approach is for the sender to inject corrupted frames into an existing
encrypted application traffic stream (the chaff), so that in the air,
the adversary sees a single stream of encrypted application traffic
with non-corrupted and corrupted frames. The goal is to make what
is seen on the air appear as a plausible sequence of frames to the
purported destination to anyone observing the traffic pattern. To do
so, the sender occasionally duplicates existing frames and corrupts
them by injecting a portion of the message to be communicated. The
sender and receiver must also develop a common means to identify
which corrupted frames contain hidden messages, and where (i.e., at
what byte offset) within a corrupted frame the hidden message lies.

4.1 Basic Mechanism: Frame Injection

DenaLi constructs corrupted frames and hides the corrupted frames
among a larger stream of frames being transmitted to the access
point. Some of these frames (perhaps including some of DenaLi’s
constructed frames) will be corrupted by the wireless channel. In
order to make it more difficult to determine which corrupted frames
contain embedded messages, DenaLi transmits hidden messages
only in frames that otherwise are part of encrypted SSL connections
(e.g., to popular websites like Gmail). We chose to use SSL connec-
tions as the basis for DenaLi’s cover traffic because the encrypted
payload of these frames acts as a one-time pad into which we can
embed similarly encrypted messages without obviously disturbing
their statistical properties.

An SSL frame will necessarily have a TCP header, which De-
naLi uses to compute the offset into the frame at which to place
the embedded message. Because bits that are located further into
a frame (i.e., with a greater offset) have a greater chance of experi-
encing corruption [11], DenaLi skews the probability distributions
on injecting message blocks to favor corrupting bits farther into
the frame. Obviously, the message must be (substantially) smaller
than the frame into which it is being injected. Our implementation
exports a virtual network interface with a small MTU, which ensures

that the covert channel is automatically broken into smaller message
blocks. Figure 2 illustrates the communication tunnel between the
sender and receiver, including how the hidden message is combined
with chaff before being transmitted over the air; the receiver hears
all of the wireless traffic but can discard the chaff before passing the
message to the receiver.

Figure 3 shows the construction of the combined packet stream
in more detail. The hidden message is passed through the virtual
network interface (a Linux TUN device), whereupon it is combined
with a copy of an existing frame from the chaff via bit-error injection.
The corrupted frame is then transmitted very close in time to the
unmodified chaff frame. To decode the hidden message, the receiver
performs the reverse of this process. Ideally, the entire stream
would be transmitted via the same outgoing interface, but limitations
of current wireless chipsets prevented us from implementing the
transmitter in this fashion; Section 5 discusses these limitations in
more detail, and Section 7 explains how we conceal the presence of
two separate transmitting interfaces.

4.2 Communication Protocol

Figure 4 shows the steps that are involved in exchanging messages
in a two-party message exchange. We now explain these steps in
detail.

Establishing a shared session key The sender and receiver use the
DenaLi channel to establish a shared session key in a manner that
is analogous to how session keys are established in many protocols.
In case of DenaLi, the colluding parties should be aware of that
they are in proximity of each other and then instantiate the key
exchange process. The sender generates a session key and encrypts
the key with the receiver’s public key. It then sends the resulting
ciphertext over the DenaLi channel, taking the resulting ciphertext
and embedding it as corrupted bits in an outgoing sequence of
frames. The receiver decodes the message from the corrupted frames
to retrieve the session key. The session key is transmitted on the
DenaLi channel just as any other message would be, except that the
initial transmission and encoding is based on the receiver’s public
key, instead of the session key itself. All transmissions on the
DenaLi channel involve a process of the sender encoding the hidden
message and the receiver decoding it upon receipt, as described
below.

Encoding and transmitting First, the sender obtains a cover frame
by duplicating a frame that is about to go out of its wireless interface
as part of an existing connection. It then corrupts this duplicate
by injecting data from the covert channel. Before injecting the
hidden message into a corrupted frame, the sender: (1) encrypts
the hidden message with the shared session key (or, in the case of
the initial key exchange, the receiver’s public key) using CBC-AES
256-bit symmetric key encryption; (2) computes the offset into the



Figure 4: Steps involved in exchanging messages using corrupted frames.

frame where the message should be inserted; and (3) computes
an HMAC over the message ciphertext. The sender then inserts
bits corresponding to the hidden message length, the HMAC, and
the hidden message itself as a block into the corrupted frame. We
describe the process of computing the frame offset and the HMAC
below.

In addition to the session key, the sender uses the TCP sequence
number and acknowledgment number as salts to compute the frame
offset for the hidden message. Doing so helps randomize the offset,
so that the inserted bits are not always in the same location in the
corrupted frame; randomizing the offset makes it difficult for an
adversary who is eavesdropping to ascertain the presence of a hidden
message, since the location of the corrupted bits that contain the
hidden message will be different for each packet. We considered
using a pseudo-random number generator with an initial seed to
allow the sender and receiver to compute this offset; the problem in
doing so is that if any corrupted frame containing a hidden message
is lost, reordered, or itself corrupted, the receiver and sender will
lose synchronization. Instead, DenaLi uses the output of a public
cryptographic hash function that uses the TCP sequence number,
acknowledgment number, and shared secret (or, in the case of the
initial key exchange, the receiver’s public key) as the input for
computing the offset. Thus, all of the information that the receiver
needs to extract the hidden message from the frame is present in the
frame itself. Unless the adversary has the shared secret, it cannot
determine the offset of the artificially corrupted burst sequence.

Because the injected frame is corrupt (i.e., its layer-two checksum
is invalid), the receiver no longer has an inherent way to determine
the integrity of the frame—or, more specifically, the embedded
DenaLi message within—it receives. In lieu of the (now corrupted)
frame checksum, a DenaLi sender also includes an HMAC computed
over the hidden message contents that is keyed on the session key,
the TCP sequence number, and the acknowledgment. The message’s
HMAC is prepended to the hidden message before the resulting bits
are inserted into the frame.

The astute reader might observe two nuances about the way that
the sender embeds the message into a corrupted frame. First, the
message length is included “in the clear”. Including the message

Figure 5: Checking the integrity of received hidden messages.

length in the clear is necessary because the number of bits corre-
sponding to the hidden message varies (both by design to make
detection more difficult, and as a natural result of the original mes-
sage sizes). Because both the value of the message length and the
offset within the frame where the bits indicating the message length
vary per-frame, recognizing a pattern would be difficult. A sender
could, of course, introduce more entropy into the message length
value by randomizing the block size for each block that it injects
into a corrupted frame, making it essentially impossible to identify
the presence of the message length value, at the expense of channel
throughput.

Second, all of the corrupted bits are injected into the frame as a
single block rather than interspersed at random bit locations through-
put the packet. Previous work has established that wireless bit errors
tend to occur as corrupted blocks [12], not as individual corrupted
bits. Additionally, because the DenaLi sender injects ciphertext
into other ciphertext (i.e., the SSL stream that serves as the chaff),
interspersing the block throughput the packet does not increase
covertness: Because both the hidden message and the chaff are en-
crypted, the adversary can see that the frame is corrupted, but has no
straightforward way of determining the bit positions corresponding
to the corruption, unless he has the corresponding uncorrupted ver-
sion of the frame. Injecting an encrypted message into SSL payload
makes the likelihood of every bit to be corrupted to be ≈ 0.5.

Receiving and decoding To receive the hidden message, the re-
ceiver polls the wireless medium for all the corrupted frames and
attempts to decode and decrypt the bits in each corrupted frame
that are located at the appropriate offset, which is computed as a
function of both the session key and the TCP sequence number and
acknowledgment numbers in the packet header. The receiver can
apply the same function to determine the appropriate offset of the
message in the corrupted frame to extract the ciphertext and decrypt
it to recover the session key, which will be used to encrypt future
messages and as an input for computing the frame offsets.

Upon hearing a corrupted frame in the wireless medium, the
receiver extracts the grain from the chaff by computing the offset
where the hidden message is expected (as a function of the key and
the TCP sequence and acknowledgment numbers contained in the
frame) on every corrupted frame, extracting the bits that should



correspond to the hidden message, computing the HMAC on the
decoded and decrypted message, and comparing it with the HMAC
value present in the packet. The receiver computes the HMAC
of the decoded message and compares it to the value of HMAC
included in the packet, which (as mentioned above) is prepended to
the transmitted message before being injected into the frame. If the
HMAC is correct, the receiver then proceeds to decode and decrypt
the hidden message. (It is extremely unlikely that the bits of the
secret message and the HMAC will be corrupted simultaneously in
such a way that the HMAC calculated over the corrupted frame will
be the same as the corrupted value of the included HMAC.) Figure 5
illustrates this process.

5 Prototype Implementation

In this section, we describe a prototype implementation [6] of De-
naLi using off-the-shelf wireless chipsets based on the design de-
tailed in Section 4.

5.1 The TUN Interface

In the interest of simplicity, our prototype implementation of DenaLi
provides a TUN interface that allows applications to use the covert
channel just as any other network interface. It is a virtual interface
in Linux, implemented as a TUNnel device, to exchange packets
with user space. A user can determine how to design and implement
applications that communicate over the channel, or just use existing
ones.

Once a packet is transmitted on the TUN interface, DenaLi en-
crypts it (including the headers and checksums), calculates the
HMAC of the encrypted message, computes the resulting message
length, and concatenates them to arrive at the bit sequence that is
ultimately inserted into a corrupt wireless frame. We compute the
HMAC using SHA-256.

5.2 Dual Wireless Interfaces

Most existing wireless chipsets calculate the layer-two checksum,
also known as the frame check sequence (FCS), in hardware. Hence,
even the “corrupted” frames created by injecting the encrypted
payload would normally be sent out with a correct FCS, meaning
the destination of the encapsulating chaff frame (i.e., the access
point) would receive the packet and attempt to process it. While the
IP checksum would still likely be incorrect, it is far less common
for an IP checksum to be invalid on purportedly correctly received
frames, destroying DenaLi’s deniability.

Hence, we must ensure that the corrupted frame is transmitted
with an invalid FCS. Unfortunately, the current architectures of
most wireless chipsets do not expose an interface to manipulate
the FCS. Instead, our prototype uses a wireless interface card with
the Atheros AR9485 chipset, which exports a register that disables
the calculation of the FCS (we are unaware of other vendors that
provide this feature). Atheros ath9k and ath5k series of chipsets
provide this feature available commercially for Linux [16]. The
register setting is not selective, however: if enabled, all packets are
transmitted without a proper FCS. Hence, in order to transmit the
chaff traffic, our prototype employs two wireless interfaces: one
to transmit the chaff SSL traffic, and one to transmit the additional
corrupted frames that contain the hidden message with a corrupted
FCS. We are using two wireless cards to facilitate usability of the
prototype, as software defined radios are bulky and hard to carry

for general purpose use by non-technical person. We use identical
Acer Aspire One laptops with Intel Celeron processor running at
800 MHz, with Linux 3.2.0 and stable compat-wireless networking
stack.

5.3 Driver Modifications and SoftMAC

Each wireless frame passes through multiple stages before it is
transmitted, many of which occur in hardware by default (and, hence,
are inherently challenging to modify), as shown in Figure 6. The
specific stages depend on the architecture of the particular wireless
chipset in use, although we provide a rough general outline that
many chipsets follow. First, an application provides the payload
to the operating system, which in turn copies the data to driver
memory after adding 802.11 MAC header. The driver then encrypts
the packet and transmits it; the encryption keys are retained in
software, but the encryption process itself occurs in hardware. The
transmission control unit manages the fine-grained timing of 802.11,
including generating the frame checksum right before transmitting
the frame.

Our DenaLi prototype makes two changes to the default process-
ing pipeline: it (1) disables the FCS checksum; and (2) disables the
retransmission of these frames, which obviously will never generate
link-layer acknowledgments. Figure 6 illustrates where we made
these modifications in the NIC processing pipeline.

To modify the behavior of the wireless interface, we use the Soft-
MAC 802.11 wireless MAC implementation [20], which offloads
many functions of the wireless driver to the kernel subsystem, thus
forming a clean interface with various vender drivers and allowing
us to modify various parts of the process.

6 Security and Performance

In this section, we evaluate the security of DenaLi relative to the
performance that it achieves. As discussed in Section 3, our primary
goals for security are deniability and confidentiality, where denia-
bility says that the resulting traffic is statistically indistinguishable
from network traffic that does not contain any hidden message. We
begin with a discussion of the characteristics of the resulting wire-
less traffic that should appear statistically indistinguishable to an
adversary. We then formalize our definition of security in terms of
the indistinguishability of the resulting DenaLi traffic from ordinary
wireless frame corruption.

We conduct real-world experiments with our prototype implemen-
tation to explore the tradeoffs between deniability and throughput
over the DenaLi channel. Across all of our experiments, our proto-
type consumes an average of 2% and maximum of 5% CPU time at
both transmitter and receiver while it injects or decodes corrupted
wireless frames. We confirm that no packets are dropped by kernel
or socket buffers despite using the pcap library for packet reception
and injection.

6.1 Traffic Characteristics

Detecting DenaLi communication requires the adversary to make
observations about perturbations to the natural error patterns at one
of two levels: packet errors in the medium, or patterns of bit errors
within individual frames.

The packet error rate is the fraction of transmitted frames in the
wireless medium that are corrupt. This rate depends on the charac-
teristics and nature of the environment where the colluding parties



Figure 6: Processing of an 802.11 wireless frame at the host, and the two modifications that we make to enable DenaLi: (1) setting the number of
retransmissions to zero through the SoftMAC implementation; (2) disabling the frame checksum computation to allow the interface to transmit the corrupted
frame.

(and the adversary) are located. Although the instantaneous frame
error rate cannot be modeled precisely because the type and fre-
quency of events that cause interference or frame loss are inherently
random, we can calculate the rate of corruption of the frames in a
live capture of a collected packet trace and attempt to mimic that
distribution. DenaLi users maintain statistics regarding the packet
error rate of normal frames so that they can inject corrupted frames
in a way that mimics the naturally occurring packet corruption in
the current environment. In channels that are subject to corruption
rates that are higher or more variable, DenaLi participants can inject
hidden messages with higher frequency. We explore the relationship
between the amount of noise in the channel and the throughput that
we can achieve later in Section 6.3.

The bit error distribution is the distribution of the bit errors in
specific positions within a corrupted frame. An adversary who cap-
tures the frames may analyze the corrupted frames to compare the
error patterns. We modify the contents of the intentionally corrupted
frame in such a manner that it is difficult to differentiate actually
corrupted bits from the crafted corrupted frame. Our goal is to inject
bit errors into packets in such a way that the resulting distribution of
bit errors resembles a bit-error pattern that would result from the cor-
ruption of one or more symbols in an encoded wireless packet. The
exact bit-error pattern is difficult to model because these patterns
depend on how the sender modulates packets. In lieu of conducting
additional experiments on bit error rates ourselves, we follow the
assumptions from the Maranello study [12], which suggests that
the bit errors in a frame occur in chunks, due to the loss of syn-
chronization between the sender and receiver or the bursty nature of
interference in the wireless channel, unlike uniform corruption of
bits in the whole frame. In our evaluation, we use DenaLi to corrupt
specific bit error patterns in such a way that mimics these observed
distributions. We also note that the farther that the sender is from the
adversary, the more likely that the adversary will observe naturally
occurring frame corruption, which should make it more difficult to
distinguish naturally occurring corruption from artificial corruption.

6.2 Security Goal

The security of DenaLi requires that: (1) sending a hidden mes-
sage using DenaLi creates a perturbation of the wireless channel’s
packet error rate and bit error distribution that is statistically indistin-
guishable from if a DenaLi message had not been sent (deniability);
(2) the adversary cannot recover the messages (confidentiality). As
the confidentiality of DenaLi relies on the strength of existing en-
cryption technologies, we focus on defining and evaluating DenaLi’s
deniability properties.

Consider an adversary who observes the properties of the wireless
channel from a particular location. The adversary can empirically
measure both the packet error rate for a sequence of frames, and

the bit error distributions within each corrupted frame. Suppose
that the adversary has two packet traces P and P′, where P is a
packet trace without DenaLi communication and P′ is a trace with
DenaLi communication. Deniability says that the adversary cannot
determine which trace has DenaLi communication with probability
greater than 1/2+ ε . If the adversary can correctly detect the pres-
ence of a covert channel with probability greater than 1/2+ ε , then
the adversary wins.

Similarly, suppose also that the adversary runs a maximum like-
lihood detector based on observations of bit error distributions in
corrupted frames to detect the presence of a DenaLi channel based
on deviations in the respective distributions. According to the def-
inition of deniability above, if ε is zero, the best threshold that
an adversary could design would be unable to distinguish the two
distributions of bit error patterns drawn from P and P′. The ε pa-
rameter measures the extent to which the two distributions do not
overlap. We quantify the degree to which the two distributions do
not overlap (which corresponds to the probability that the adver-
sary succeeds) using the Pearson correlation coefficient between
the two distributions [24]. ε is simply half times one minus the
correlation coefficient. Formally, we denote the bit error distribu-
tion from packet trace P′ as f ′(x), where x is the bit position in the
packet; similarly, the normal bit error distribution from packet trace
P is f (x). For each of the distributions that are parameterized by
frame error rate and bytes injected per frame, we compare the two
distributions as follows:

ε = 1/2− cov( f (x), f ′(x))
2σ f (x)σ f ′(x)

Note that we can make ε arbitrarily small: If DenaLi injects no bits
from the hidden message, the naturally occurring bit error distribu-
tion is unperturbed, and the two distributions are indistinguishable,
both by definition and by construction. Such a channel, of course,
is useless because its throughput is zero. Increasing the throughput
of the hidden channel by injecting additional corrupted frames and
introducing bit errors that deviate from the naturally occurring bit
errors perturbs the underlying distribution. Thus, there is a tradeoff
between the degree to which the bit error distribution is perturbed
(i.e., the number of bits from the hidden message that we inject into
any corrupted frame) and the resulting throughput.

The packet error rate also has a naturally occurring value that
varies over time. Suppose that for a given time interval i in packet
trace P, the adversary observes a packet error rate fi. Then, the
adversary can observe a distribution F = { f1, f2, . . . , fn} and a cor-
responding distribution F ′ for packet trace P′. We say that the
packet error rate induced by running DenaLi achieves deniability
if the adversary cannot succeed in distinguishing F and F ′ with a
probability greater than 1/2+ ε . By defining ε according to the
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(a) The bit-error distribution from the perspective of the DenaLi sender, given a 23 KB message and a 70-byte TUN MTU.
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(b) Natural bit error distribution.
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(c) The bit error distribution after the DenaLi perturbation from (a) is added.

Figure 7: Bit-error distribution in an injected DenaLi frame at the sender, and bit error distributions as viewed at a monitor, with and without injected DenaLi
frames.

distance between these two distributions, we can determine the num-
ber of corrupted packets that a DenaLi sender can inject subject
to an upper bound on ε . In principle, a DenaLi sender can detect
the average packet error rate for some time interval and transmit
corrupted packets in a way that tracks this packet error rate within
some bound of ε . For the purposes of our evaluation, we have fixed
the packet error rate, but in practice it might vary. Because packet
corruption is a local phenomenon that is erratic and unpredictable,
fine-grained control over this statistic may not be necessary or useful
in practice.

6.3 Evaluating Deniability vs. Throughput

In this section, we evaluate the tradeoff between deniability and
throughput of the DenaLi channel using our prototype implementa-
tion. We first describe the experimental setup and then present the
results.

6.3.1 Experimental setup

We design an experiment with a sender, a receiver, and a single
adversary. Each device is a laptop, where the sender and receiver
are configured as described in Section 5. The sender generates cover
traffic by browsing Gmail over a secure HTTP connection. The
adversary is a third laptop with a wireless interface card configured



in monitor mode. We locate the adversary in close proximity to the
receiver, which, as we described in Section 3, is the place where
the adversary has the highest probability of detection. We assume
that the adversary has only a single monitor. Each node in the setup
collects packet traces and records the corresponding packet error
rates and bit error distributions, allowing us to see these statistics at
the sender, receiver, and the adversary.

6.3.2 Results

We first study the bit-error distributions that result from injecting
chunks of hidden messages for a 70-byte MTU for the TUN device.
Next, we study how this injected error distribution looks when
viewed from the adversary, modeled as a monitor located near the
receiver. Finally, to measure how throughput varies with deniability,
we explore the relationship between the throughput of the DenaLi
channel and the Pearson correlation coefficient between the normal
bit error distribution and perturbed bit error distribution as seen at
the adversary and the resulting throughput of the hidden message
corresponding for the corresponding perturbation.

Figure 7a shows the bit-error distribution that results from inject-
ing about 23 KB of a hidden message across a sequence of wireless
frames, assuming a 70-byte MTU for the TUN device. We choose
this size for the TUN MTU because previous studies [12] have
shown that about 75% of corrupted packets have bit errors that are
less than 400 bits, and a 70-byte MTU and 256-bit HMAC corrupts
at most 100 bytes.

Figure 7b shows the original bit error distribution for chaff traffic,
as viewed from the monitor; Figure 7c shows a similar distribution
after DenaLi has injected a hidden message; as the figures show,
the two distributions are essentially indistinguishable. For such a
configuration, given “chaff” traffic throughput of about 2 Mbps and
a packet error rate of every thousandth packet, DenaLi achieves a
hidden message rate of about 6 bps. Although the two bit error
distributions are not identical, they are reasonably close to one other.
The Pearson correlation coefficient between these two distributions
was 0.99801, yielding an ε value on the order of 10−4. Part of the
reason that the two distributions are so close is the relatively low
throughput that we have chosen for the DenaLi channel. In the rest
of this section, we further explore the tradeoff between the level of
deniability that the DenaLi channel provides and the throughput that
it achieves.

Our goal in the first experiment was to demonstrate DenaLi’s
ability to achieve deniability with respect to bit error distributions.
We control the frequency and the extent of corruption so that the
corruption is natural. Because the channel may further corrupt
bits in the frame, we are conservative in how we corrupt bits in
the frame, which naturally restricts throughput. We now explore
how a sender can achieve higher throughput in exchange for less
deniability (i.e., a larger ε value). We inject one packet for every
10,000 frames of cover traffic This packet injection rate which clearly
limits the maximum throughput we can achieve to (at most) 0.0001
of the throughput of the cover traffic, making the two distribution
indistinguishable to the adversary. Figure 8 shows how ε varies as
we increase the TUN MTU (i.e., throughput of the DenaLi channel).
Naturally, ε increases with MTU. The throughput of the DenaLi
channel is also directly proportional to both the throughput at which
the chaff traffic is being sent and the packet error rate.

Finally, we study how the throughput of the DenaLi channel
varies as we vary the packet error rate. To explore a range of packet
error rates, we draw from the range of bit error rates reported in the
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Figure 8: ε vs. TUN MTU (i.e., injected frame size). We varied MTU sizes
to achieve different throughput. Large TUN MTU values result in larger ε

values and are less deniable.

BER PER Throughput (bps)
10−4 0.7 427.4
10−5 0.1 103.6
10−6 0.05 42.98

Table 1: Bit error rates, approximate corresponding packet error rates
assuming 1500-byte packets, and the resulting DenaLi throughput given a
70-byte TUN MTU. We test a range of bit error rates that are observed in
practice [14].

PPR study [14] and convert these observed rates to the correspond-
ing packet error rates in this operating regime. For this experiment,
we fix the MTU of the TUN interface to 70 bytes and send SSL
chaff traffic by uploading a large file to a Gmail server while varying
the packet injection rate (i.e., the rate at which we inject corrupted
frames containing hidden messages). Note that fixing the packet
error rate and the MTU size is a rough mechanism for controlling ε ,
since the deviation is controlled by the size of the DenaLi block size
(i.e., the TUN MTU). We then measure the corresponding through-
put (which is directly proportional to the throughput of the chaff
traffic). Table 1 shows how the throughput of the DenaLi channel
varies with packet error rates for a range of operating regimes. The
channel efficiency is similar to previous experiments; as expected,
the bitrate of the channel increases as the channel noise increases,
as a noisier channel affords more opportunities to inject corrupted
frames without deviating from “normal” packet corruption profiles.
We caution that although traffic rates appear faster, the increase
comes at the cost of deniability, as we showed in Figure 8.

7 Discussion

Here we discuss open issues, including both weaknesses with the
current DenaLi design and avenues for future research.

Coping with limited wireless bandwidth Our experiments show
that the cover traffic overhead for DenaLi is anywhere from about
10:1 (for high ε) to 100:1 (for low ε), depending on the burst of
errors introduced and the frequency of they are injected. In any
case, the amount of cover traffic required to achieve deniability is
significant, and it may be prohibitive in settings where users bear



high data-usage costs or face usage caps. Although the overhead
of cover traffic is inherently necessary for systems such as DenaLi,
it may be more inconvenient for our use cases, where users may
be communicating over DenaLi on wireless networks that are not
that well-provisioned in the first place (e.g., coffee shops, public
squares). We intend to conduct more experiments in these types of
settings to better understand the tradeoffs between the overhead that
typical users would face and the deniability that they would need to
achieve.

Analysis of bitrate adaptation algorithms In this paper, we have
ignored the topic of bitrate selection. 802.11 devices have multiple
bitrates to chose from, and some senders will decrease their bitrate
when they encounter poor frame reception rates, hence corrupt
frames may be transmitted at different rates than the eventually
successfully received copy. In our prototype, we transmit corrupted
frames at 1 Mbps. This is due to the limitation of commodity
hardware as the chipset does not allow different transmission data
rates. An adversary might profile the bitrates of the corrupted frames
to discover anomalous bitrate adaptation patterns. The particular
fallback rate(s) are determined by algorithm implemented by the
driver at the sender, which might be vendor specific. For softmac
drivers in the Linux distribution, the rate algorithm is Minstrel,
and the fallback rates can be configured in the frame’s transmit
descriptor.

Timing attacks The adversary could perform more sophisticated
timing attacks to discover a sender who is using DenaLi. Under
ordinary circumstances, when a sender transmits a corrupted frame,
the sender should follow that frame with a retransmission and ul-
timately receive a corresponding link-layer acknowledgment. Our
implementation may not give rise to retransmissions within the ap-
propriate time bounds; in particular, in the worst case, an adversary
might see the corrupted frame and the retransmission within a very
short time interval (possibly even simultaneously). This limitation
results because of DenaLi’s implementation on an off-the-shelf wire-
less chipset which constrain how we can modify the behavior of
the wireless MAC. A software radio platform such as Sora [26]
could be used to build a system that ensures that duplicate corrupted
frames always precede the corresponding non-corrupted frame and
link-layer acknowledgment, but such a prototype would not be as
immediately deployable as DenaLi.

Transport Users can build two-way communication reliability using
TCP or application-layer acknowledgements. Denali provides a
decoupled virtual interface which gives DenaLi users freedom to
choose. The attacker can mount DDoS attack by replaying corrupted
packet traces, but we can see that DenaLi does not have a high
overhead on commodity laptops. Also, the underlying encrypted
hidden messages might arrive out of order, requring a transport-layer
protocol like TCP.

Smartphones Our current prototype implementation of DenaLi was
implemented on Linux laptops, but a likely deployment scenario for
DenaLi might be on smartphones (e.g., where citizens, operatives,
or soldiers in a common area are coordinating and may only have
small personal devices). In some of these areas, we might expect
802.11 WiFi deployments, in which case porting DenaLi to mobile
devices might suffice. In some cases, 802.11 access points may not

be deployed, in which case deniable communication might need
to depend on some other wireless communication medium (e.g.,
cellular, bluetooth). Current smartphones equipped with Snapdragon
processors have clock cycles up to 1 GHz, which is powerful enough
to process DenaLi packets.

Multi-hop wireless networks DenaLi currently operates only
where the sender and recipient are within radio range of one another
(i.e., typically on the same wireless LAN). Although we believe that
there are significant opportunities for using DenaLi in these settings,
additional deployment opportunities exist in multi-hop wireless
mesh networks, many of which are now explicitly being deployed
for the express purpose of Internet freedom [4]. In these settings,
DenaLi might still be used to deniably pass messages between each
pair of participants (i.e., it could form the “link layer” anonymous
communication protocol), but applying DenaLi to a mesh network
setting is less straightforward. First, doing so would involve con-
structing an overlay network of participants to relay the message,
where the relays would be chosen both according to the level of trust
for each participant, as well as their (rough) geographic location.
Participants may also have to re-inject hidden messages into newly
corrupted packets at each hop to avoid intersection attacks; doing so
is not straightforward, since the intermediate hops may not possess
the key to decode the hidden message.

8 Conclusion

Citizens of the world have an increasing need to achieve private com-
munications in public spaces. Unfortunately, public meetings are
observable, and users who are communicating with one another may
need more covert means of exchanging messages when they are in
close proximity. In many cases, users may wish to hide the fact that
they are communicating in the first place. We suggest that parties
who are near one another should take advantage of packet corruption
in wireless networks to provide cover for their communications. To
do so, we develop DenaLi, a lightweight deniable communications
system that allows parties to exchange messages in a local setting,
without exposing the fact that they are communicating. We take
advantage of the ubiquitous nature of 802.11 “WiFi” networks to
construct a covert communications channel, using corrupted packets
as the “chaff” to hide communications between parties.

We have designed and implemented DenaLi using real end hosts
and commodity wireless interface cards, demonstrating that such a
system is practical. Our experiments explore the tradeoff between
the deniability of the communications (i.e., the extent to which the
profile of packet corruption matches “normal” corruption character-
istics) and the throughput that the user can achieve when sending
hidden messages. Like many anonymous communications systems,
DenaLi requires significant communications overhead in terms of
the cover traffic that users must send to achieve deniability.
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