Onion services

(¢©

Philipp Winter
pwinter@cs.princeton.edu

Nov 30, 2015

mailto:pwinter@cs.princeton.edu

Quick introduction to Tor

TOr

TorProject.org

An overview of Tor

> Toris a low-latency anonymity network

» Based on Syverson's onion routing...
» ...which is based on Chaum's mix nets
» Network consists of ~7,000 relays

» Transports TCP streams (and DNS A records)

» Any TCP-based protocol can be run over Tor
» Notalways a good idea (e.g., Bitcoin, BitTorrent)
» TCP over TCP bad for performance

» Decouples who you are from what you do

» Entry guard knows who you are
» Exitrelays knows what you do

What does an attacker see?

¥ bevie o

Key %
[i
Emcudiopping nonesasanannes
Dotashadng snssmssssnnsens

Source: https://www.eff.org/pages/tor-and-https

https://www.eff.org/pages/tor-and-https

The idea behind onion routing

Router A Key

Router B Key
Router C Key

Message

Destination
>

Source: https://en.wikipedia.org/wiki/Onion_routing

https://en.wikipedia.org/wiki/Onion_routing

H

oo <0

Bootstrapping

> Relays are listed in consensus, which is published by directory
authorities

» Currently ~7,000 relays in consensus
» Eightdirectory authorities
» Consensus voted on and signed by authorities

» Directory authorities and their keys are hard-coded in code

» Directory authorities rarely change
» Operators well known to Tor developers

Karlstad0 m5TNC3uAV+ryG6fwI7ehyMqc5kU OgDQHa7kIO7jhA/6wtD8g0nZu+4 \
2015-11-29 19:03:19 193.11.166.194 9000 80

Fast Guard HSDir Running Stable V2Dir Valid

Tor 0.2.6.10

Bandwidth=4270

reject 1-65535

Onion services

©0,

In a nutshell

Most people know Tor for sender anonymity
> Server doesn't know client's IP address
Onion services add responder anonymity

» Clientdoesn't know server's IP address
» Run arbitrary TCP service without revealing location
» Sender and responder anonymity can be coupled

Anonymous clients can communicate with anonymous servers
without ever leaving the Tor network

In addition: limited DoS and censorship protection

No protection against deanonymisation on the application layer

Onion services based on . onion pseudo TLD

ok, Inc. (US) | hitps:/iwuw.facebookcorewwwi.onion/?_rdr

facebook

Connect with friends and the
world around you on Facebook.

See photos and updates irom friends in News Feed.

Share what’s new in your life on your Timeline.

Find more of what you're looking for with Facebaok Search.

Sign Up

It’s free and always will be.
First name Last name

Email or mobile numbe

Re-enter email or mobile number

New password

Birthday

[[| Why dol need to provide my
Month J Day J Year et

C Female O Male

By cicking Sign U
read our Data Poi

v

v

v

v

How are onion services used in practice?

Many providers now offer it as alternative

» Facebook
» DuckDuckGo search
> Many Bitcoin sites

Metadata-free chat services built on top (Ricochet, pond)
According to statistics, ~30,000 deployed services [1]

Details about content not known because of crawling-resistance

Zooko's triangle

Global

DNS Onion services

Memorable Petnames Secure

Source: http://zooko.com/distnames.html

http://zooko.com/distnames.html

v

v

v

Onion services by example: Bob

Bob is a journalist who wants to publish sensitive information
He wants to publish his articles anonymously and without getting
censored

» Hisadversaries shouldn't be able to take offline his server

So Bob decides to set up a onion service (OS) in the Tor network

There are six steps, from announcing the OS to using it

Step O: Installation and configuration

» Before Bob starts using Tor, he has to install the service

» So Bob sets up his own lighttpd web server which is not accessible
over the Internet, i.e., itis bound to 127.0.0.1:80 instead of
0.0.0.0:80

> Also, Bob downloads the Tor binary and configures the onion
service:
HiddenServiceDir /path/to/directory/
HiddenServicePort 80

Step 1: Announcing existence

» Bob's OS needs to advertise its existence in the Tor network

» The OS randomly picks relays, so called introduction points, in the
network and establishes circuits to them

» Then, the OS asks these relays to act as introduction points by giving
them its public key

Step 1: Announcing existence

TH¢ Hidden Services: 1

Step 1: Bob picks some —
introduction points and — —
builds circuits to them. —

'E_L/, Tor cloud
AT Tor cireuit

Intred uction points:
2D rubiic key

One-time secret

Rendezvous point

Step 2: Upload of onion service descriptor

Now, an onion service descriptor must be built
» descriptor — (PKys, P, IP,, ..., IP,)

SigPKhs

The descriptor maps the name of an OS to its reachability
information

Itis uploaded to six Tor relays that serve as onion service directories
Clients reach the OS by accessing KEY.onion; KEY is derived from the
OS’ public key

» Base32(SHA-1(public key)[: 10])

Now, the OS is set up and ready to receive connections!

Step 2: Upload of onion service descriptor

TH¢ Hidden Services: 2

Step 2: Bob advertises
his hidden service --
X¥Z.onion -- at the
database.

'E_L/, Tor cloud

AT Tor cireuit
Intred uction points:
2D rubiic key

One-time secret

Rendezvous point

Tor's distributed hash table

E10CC32A0
E024FB1AB
EO019029AB

facebookcorewwwi.onion

co...

Replica
9B94CDOB

80...
As of Nov 28: 2,884 out of 6,773 relays (43%) are HSDirs

40. ..

Step 3: Alice prepares a connection

Alice now wants to connect to Bob's OS to read his articles

Alice somehow learns about the onion address
http://bjt5zk37w27c6£fy2. onion out-of-band since there is
no complete central directory by design.

Alice's client downloads the service descriptor from the onion
service directory
» SHA-1(permanent-id|SHA-1(time-period|descriptor-cookie|replica))

That way she obtained the public key and the introductory points!

Finally, Alice randomly picks a rendezvous point

http://bjt5zk37w27c6fy2.onion

Step 3: Alice prepares a connection

- - —
Tér Hidden Services: 3 () Torcaud
Step 3: Alice hears that L T RrEL
X¥Z anion exists, and she Ifsmiie e e
requests more info fram
the database. She also | m Public key
sets up a rendezvous = _
point, though she could - One-time secret
have done this before. P .y Rendezvous point

Step 4: Alice informs the onion service

Now Alice's client prepares an introduce message encrypted with
OS’ public key

The message contains the address of the rendezvous point and a
one-time secret

Alice sends this message to one of OS’ introductory points and they
forward it to the OS

Alice does all this over a Tor circuit so she remains anonymous

Step 4: Alice informs the onion service

TH¢ Hidden Services: 4 {7 Tor cloud

e
Step 4: Alice writes a AT Tor circuit
message to Bob

(encrypted to PK) listing S |ntroduction points
the rendezvous point m)

. Public k
and a cne-time secret, _ @B Fubic key

and asks an intreduction G0 Cne-time secret

pointto deliver it to Bob.
g T } Rendezvous point

Step 5: The onion service prepares a connection

» The OS decrypts Alice's introduce message and obtains the
rendezvous point's address as well as the one-time secret

» The OS creates a circuit to the rendezvous point and sends the
secretto it

Step 5: The onion service prepares a connection

TH¢ Hidden Services: 5

Step 5: Bob connects to
the Alice's rendezvous
point and provides her
one-time secret.

'E_L/, Tor cloud

A Tor circuit

Intred uction points:
2D rubiic key
One-time secret

Rendezvous point

Step 6: The connection is established

» Finally, the rendezvous point notifies Alice of the successful
connection

» The rendezvous point now simply forwards end-to-end encrypted
data between Alice and the OS

Step 6: The connection is established

TH¢ Hidden Services: 6

Step 6: Bob and Alice
proceed to use thelir Tor
circuits like normal.

'E_L/, Tor cloud

A Tor circuit

Intred uction points:
2D rubiic key
One-time secret

Rendezvous point

Why rendezvous points?

» Introduction points only forward connection information and no
actual traffic

» Sothey don't seem to be “responsible” for a onion service

> Also, the traffic load could become too high if they would also
forward traffic

What the involved parties know

TheClient...
» Does not know the location of the OS
» Knows the location of the rendezvous point
The rendezvous point...
» Does not know the location of both, the OS and the client

» Knows nothing about the nature of the OS or the data being
transferred, other than its volume

The onion service...

» Does not know the location of the client

» Knows the location of the rendezvous point
The onion service directories...

» Knows the name of the onion service

» Knows how often (anonymous) clients request the onion service

A more practical point of view

How Bob operates his OS...

» Bob runs lighttpd which is listening to localhost:80 and is hence
unreachable to the wide Internet

» lighttpd is not aware of the fact that it is used as Onion service!

» The Tor process running on the same machine is accepting
connections to the OS and forwards them to localhost:80

» The clientapplication can also be unaware of Tor if it is used
together with torsocks (e.g. torsocks ssh
u73zzkakuscok7zq.onion)

» Soclientand server could be communicating completely
anonymous over Tor without even knowing

Attacks on onion services

v

v

v

v

First attack: @verlier & Syverson

In 2006, @verlier and Syverson demonstrated how the location (i.e.
IP address) of an OS can be revealed

Attacker only needed a Tor client and a relay (trivial requirements)
and the attack could work within minutes

Core vulnerability: OS chose relays for its circuit at random

Goal of attacker: Get chosen by OS as the first hop in the circuit

@verlier & Syverson: How it works in practice

Eve uses her Tor client to connect to the OS and she also runs a relay
Eve continuously establishes connections to the OS and checks every
time whether her relay was selected as first hop in the circuit

0OS — RP

As soon as her relay was chosen by the OS as first hop, she has the IP
address!

She can confirm whether her relay was selected by doing traffic
pattern analysis using statistics

Solution: Guard nodes for OSes were proposed and implemented

@verlier & Syverson: Visualized

Rendezvous
Hidden Service Eve Node 2 Node 3 Point

|

Direct connection

Second attack: Murdoch

First we have to know...

» Computing devices have a so called clock skew, the ratio between
the computer's actual and the nominal clock frequency

» So after x days, a computer's clock drifted off by y milliseconds

> Clock skew is a very small value but can even be measured over a
network

» Computer's (even identical models) have different clock skews
because the manufactory process is not perfectly accurate — the
clock skew can be seen as a hardware fingerprint

Second attack: Murdoch

Clock skew and CPU load...

> Clock skew changes with temperature of the CPU (differences of
1-1.5°Cor1.8—2.7°F are measurable)

» The CPU's temperature can be influenced by controlling the load

» High load can be induced remotely by making the OS busy (e.g.
fetching many websites)

Murdoch: How it works in practice

> Eve suspects several IP addresses to be the OS she wants to
deanonymize. This “closed-world model” is a practical limitation for
attackers.

» She sends alternating traffic bursts through Tor to the OS and
measures the clock skew of the suspected IPs (directly and not over
Tor)

» Using correlation techniques, she can identify the OS if the IP
addresses was in the set of suspects

Murdoch: Visualized

Direct IP connection

a
4 Hidden =
Eve's measurer service lE=——
Py - e
‘/ \“ S—

< = N

j—\ ~ Tor network A

I R \

A & \ \

B\ 4

Eve's attacker Dy

Conclusions

J

J
J
v

What you should keep in mind

» OSes provide responder anonymity as well as DoS and censorship
protection

» OSes are fairly flexible and do not require modifications of the
underlying service (e.g. apache or sshd)

» OS anonymity weaker than Tor client anonymity because attackers
can always make them “talk”

[

Literature |

Unique .onion addresses. URL:
https://metrics.torproject.org/hidserv-dir-onions-seen.html.

Alex Biryukov, lvan Pustogarov, and Ralf-Philipp Weinmann. “Trawling for Tor
Hidden Services: Detection, Measurement, Deanonymization”. In: Security &
Privacy. IEEE, 2013. URL:
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf.

Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The
Second-Ceneration Onion Router”. In: USENIX Security. USENIX, 2004. URL:
https://svn.torproject.org/svn/projects/design-paper/tor-
design.pdf.

Steven]. Murdoch. “Hot or Not: Revealing Hidden Services by their Clock Skew”.
In: Computer and Communications Security. ACM, 2006. URL:
http://www.cl.cam.ac.uk/"sjm217/papers/ccsO6hotornot.pdf.

Lasse @verlier and Paul Syverson. “Locating Hidden Servers”. In: Security & Privacy.
IEEE, 2006. URL: http://www.onion-
router.net/Publications/locating-hidden-servers.pdf.

https://metrics.torproject.org/hidserv-dir-onions-seen.html
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf
https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/ccs06hotornot.pdf
http://www.onion-router.net/Publications/locating-hidden-servers.pdf
http://www.onion-router.net/Publications/locating-hidden-servers.pdf

Literature Il

@ The Tor Project. Tor: Hidden Service Protocol. URL:
https://www.torproject.org/docs/hidden-services.html.en.

@ The Tor Project. Tor Rendezvous Specification. URL:
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=
HEAD; f=rend-spec.txt.

https://www.torproject.org/docs/hidden-services.html.en
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt

