
Onion services

Philipp Winter
pwinter@cs.princeton.edu

Nov 30, 2015

mailto:pwinter@cs.princeton.edu

Quick introduction to Tor

An overview of Tor

I Tor is a low-latency anonymity network
I Based on Syverson's onion routing.. .
I . . .which is based on Chaum's mix nets
I Network consists of∼7,000 relays

I Transports TCP streams (and DNS A records)
I Any TCP-based protocol can be run over Tor
I Not always a good idea (e.g., Bitcoin, BitTorrent)
I TCP over TCP bad for performance

I Decouples who you are from what you do
I Entry guard knows who you are
I Exit relays knows what you do

What does an attacker see?

Source: https://www.eff.org/pages/tor-and-https

https://www.eff.org/pages/tor-and-https

The idea behind onion routing

Source: https://en.wikipedia.org/wiki/Onion_routing

https://en.wikipedia.org/wiki/Onion_routing

Bootstrapping

I Relays are listed in consensus, which is published by directory
authorities

I Currently∼7,000 relays in consensus
I Eight directory authorities
I Consensus voted on and signed by authorities

I Directory authorities and their keys are hard-coded in code
I Directory authorities rarely change
I Operators well known to Tor developers

r Karlstad0 m5TNC3uAV+ryG6fwI7ehyMqc5kU OgDQHa7kI07jhA/6wtD8gOnZw+4 \
2015-11-29 19:03:19 193.11.166.194 9000 80

s Fast Guard HSDir Running Stable V2Dir Valid
v Tor 0.2.6.10
w Bandwidth=4270
p reject 1-65535

Onion services

In a nutshell

I Most people know Tor for sender anonymity
I Server doesn't know client's IP address

I Onion services add responder anonymity
I Client doesn't know server's IP address
I Run arbitrary TCP service without revealing location
I Sender and responder anonymity can be coupled

I Anonymous clients can communicate with anonymous servers
without ever leaving the Tor network

I In addition: limited DoS and censorship protection
I No protection against deanonymisation on the application layer

Onion services based on .onion pseudo TLD

How are onion services used in practice?

I Many providers now offer it as alternative
I Facebook
I DuckDuckGo search
I Many Bitcoin sites

I Metadata-free chat services built on top (Ricochet, pond)

I According to statistics,∼30,000 deployed services [1]

I Details about content not known because of crawling-resistance

Zooko's triangle

Source: http://zooko.com/distnames.html

http://zooko.com/distnames.html

Onion services by example: Bob

I Bob is a journalist who wants to publish sensitive information

I He wants to publish his articles anonymously and without getting
censored

I His adversaries shouldn't be able to take offline his server

I So Bob decides to set up a onion service (OS) in the Tor network

I There are six steps, from announcing the OS to using it

Step 0: Installation and configuration

I Before Bob starts using Tor, he has to install the service

I So Bob sets up his own lighttpd web server which is not accessible
over the Internet, i.e., it is bound to 127.0.0.1:80 instead of
0.0.0.0:80

I Also, Bob downloads the Tor binary and configures the onion
service:
HiddenServiceDir /path/to/directory/
HiddenServicePort 80

Step 1: Announcing existence

I Bob's OS needs to advertise its existence in the Tor network

I The OS randomly picks relays, so called introduction points, in the
network and establishes circuits to them

I Then, the OS asks these relays to act as introduction points by giving
them its public key

Step 1: Announcing existence

Step 2: Upload of onion service descriptor

I Now, an onion service descriptor must be built
I descriptor 7→ (PKhs, IP1, IP2, ..., IPn)SigPKhs

I The descriptor maps the name of an OS to its reachability
information

I It is uploaded to six Tor relays that serve as onion service directories

I Clients reach the OS by accessing KEY.onion; KEY is derived from the
OS’ public key

I Base32(SHA-1(public key)[: 10])

I Now, the OS is set up and ready to receive connections!

Step 2: Upload of onion service descriptor

Tor's distributed hash table

As of Nov 28: 2,884 out of 6,773 relays (43%) are HSDirs

Step 3: Alice prepares a connection

I Alice now wants to connect to Bob's OS to read his articles

I Alice somehow learns about the onion address
http://bjt5zk37w27c6fy2.onion out-of-band since there is
no complete central directory by design.

I Alice's client downloads the service descriptor from the onion
service directory

I SHA-1(permanent-id|SHA-1(time-period|descriptor-cookie|replica))

I That way she obtained the public key and the introductory points!

I Finally, Alice randomly picks a rendezvous point

http://bjt5zk37w27c6fy2.onion

Step 3: Alice prepares a connection

Step 4: Alice informs the onion service

I Now Alice's client prepares an introduce message encrypted with
OS’ public key

I The message contains the address of the rendezvous point and a
one-time secret

I Alice sends this message to one of OS’ introductory points and they
forward it to the OS

I Alice does all this over a Tor circuit so she remains anonymous

Step 4: Alice informs the onion service

Step 5: The onion service prepares a connection

I The OS decrypts Alice's introduce message and obtains the
rendezvous point's address as well as the one-time secret

I The OS creates a circuit to the rendezvous point and sends the
secret to it

Step 5: The onion service prepares a connection

Step 6: The connection is established

I Finally, the rendezvous point notifies Alice of the successful
connection

I The rendezvous point now simply forwards end-to-end encrypted
data between Alice and the OS

Step 6: The connection is established

Why rendezvous points?

I Introduction points only forward connection information and no
actual traffic

I So they don't seem to be “responsible” for a onion service

I Also, the traffic load could become too high if they would also
forward traffic

What the involved parties know

The Client. ..
I Does not know the location of the OS
I Knows the location of the rendezvous point

The rendezvous point. . .
I Does not know the location of both, the OS and the client
I Knows nothing about the nature of the OS or the data being

transferred, other than its volume
The onion service. ..

I Does not know the location of the client
I Knows the location of the rendezvous point

The onion service directories. . .
I Knows the name of the onion service
I Knows how often (anonymous) clients request the onion service

A more practical point of view

How Bob operates his OS...

I Bob runs lighttpd which is listening to localhost:80 and is hence
unreachable to the wide Internet

I lighttpd is not aware of the fact that it is used as Onion service!

I The Tor process running on the same machine is accepting
connections to the OS and forwards them to localhost:80

I The client application can also be unaware of Tor if it is used
together with torsocks (e.g. torsocks ssh
u73zzkakuscok7zq.onion)

I So client and server could be communicating completely
anonymous over Tor without even knowing

Attacks on onion services

First attack: Øverlier & Syverson

I In 2006, Øverlier and Syverson demonstrated how the location (i.e.
IP address) of an OS can be revealed

I Attacker only needed a Tor client and a relay (trivial requirements)
and the attack could work within minutes

I Core vulnerability: OS chose relays for its circuit at random

I Goal of attacker: Get chosen by OS as the first hop in the circuit

Øverlier & Syverson: How it works in practice

I Eve uses her Tor client to connect to the OS and she also runs a relay

I Eve continuously establishes connections to the OS and checks every
time whether her relay was selected as first hop in the circuit
OS→ RP

I As soon as her relay was chosen by the OS as first hop, she has the IP
address!

I She can confirm whether her relay was selected by doing traffic
pattern analysis using statistics

I Solution: Guard nodes for OSes were proposed and implemented

Øverlier & Syverson: Visualized

Second attack: Murdoch

First we have to know...

I Computing devices have a so called clock skew, the ratio between
the computer's actual and the nominal clock frequency

I So after x days, a computer's clock drifted off by y milliseconds

I Clock skew is a very small value but can even be measured over a
network

I Computer's (even identical models) have different clock skews
because the manufactory process is not perfectly accurate→ the
clock skew can be seen as a hardware fingerprint

Second attack: Murdoch

Clock skew and CPU load...

I Clock skew changes with temperature of the CPU (differences of
1–1.5°C or 1.8–2.7°F are measurable)

I The CPU's temperature can be influenced by controlling the load

I High load can be induced remotely by making the OS busy (e.g.
fetching many websites)

Murdoch: How it works in practice

I Eve suspects several IP addresses to be the OS she wants to
deanonymize. This “closed-world model” is a practical limitation for
attackers.

I She sends alternating traffic bursts through Tor to the OS and
measures the clock skew of the suspected IPs (directly and not over
Tor)

I Using correlation techniques, she can identify the OS if the IP
addresses was in the set of suspects

Murdoch: Visualized

Conclusions

What you should keep in mind

I OSes provide responder anonymity as well as DoS and censorship
protection

I OSes are fairly flexible and do not require modifications of the
underlying service (e.g. apache or sshd)

I OS anonymity weaker than Tor client anonymity because attackers
can always make them “talk”

Literature I

Unique .onion addresses. URL:
https://metrics.torproject.org/hidserv-dir-onions-seen.html.

Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. “Trawling for Tor
Hidden Services: Detection, Measurement, Deanonymization”. In: Security &
Privacy. IEEE, 2013. URL:
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf.

Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The
Second-Generation Onion Router”. In: USENIX Security. USENIX, 2004. URL:
https://svn.torproject.org/svn/projects/design-paper/tor-
design.pdf.

Steven J. Murdoch. “Hot or Not: Revealing Hidden Services by their Clock Skew”.
In: Computer and Communications Security. ACM, 2006. URL:
http://www.cl.cam.ac.uk/~sjm217/papers/ccs06hotornot.pdf.

Lasse Øverlier and Paul Syverson. “Locating Hidden Servers”. In: Security & Privacy.
IEEE, 2006. URL: http://www.onion-
router.net/Publications/locating-hidden-servers.pdf.

https://metrics.torproject.org/hidserv-dir-onions-seen.html
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf
https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/ccs06hotornot.pdf
http://www.onion-router.net/Publications/locating-hidden-servers.pdf
http://www.onion-router.net/Publications/locating-hidden-servers.pdf

Literature II

The Tor Project. Tor: Hidden Service Protocol. URL:
https://www.torproject.org/docs/hidden-services.html.en.

The Tor Project. Tor Rendezvous Specification. URL:
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=
HEAD;f=rend-spec.txt.

https://www.torproject.org/docs/hidden-services.html.en
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt

