
Information Security Principles;
Software Exploits and Defenses

COS 518: Advanced Computer Systems
Lecture 8

Kyle Jamieson

[Credits: Content adapted from M. Freedman, B. Karp, N. Zeldovich]

1. Introduction to the design of secure systems

2. Stack smashing buffer overflows and
countermeasures

3. Heap smashing buffer overflows and
countermeasures

2

Today

• Secure = achieves some property despite attacks by
adversaries

• High-level plan for thinking about secure systems:

1. Policy: The goal you want to achieve
– e.g., only Alice should read file F
– Common goals: confidentiality, integrity, availability

2. Threat model: What the attacker can do
– e.g. can guess passwords, cannot physically steal our

server
3. Mechanism: Software/hardware you system uses to

enforce security
– e.g. user accounts, passwords, trusted hardware

3

Building secure systems

• e.g. grades.txt stored on a shared file server
– Policy: Only course staff may read and write the grades file

• Easy to implement the positive aspect of the policy

• But security is a negative goal
– Want no tricky way for non-staff to get at file
– e.g. exploit a bug in file server's code

• Guess TA’s password
• Steal instructor’s laptop, maybe it has a local copy of the

grades file.
• Intercept grades when they are sent over the network to

the university registrar
• Get a job in the university registrar's office

4

Building secure systems is hard

• Cost asymmetry
– “Fortune favors the attacker”
– Secure system designer must protect everything
– Attacker need only find one “hole”

• Can’t get policies/threats/mechanisms right on first try

• What to do? Usually iterate: design, watch attacks, update

• What’s the point if we can’t achieve perfect security?
– It’s rarely required
– Make the cost of the attack > value of the information
– Today we’ll look at ways to cut off entire classes of attacks
– Success: Popular attacks ca. 10 years ago no longer fruitful

5

Building secure systems is hard (2)

• Problems with the policy itself
– System enforces policy, but the policy is inadequate

• e.g. Wired editor Mat Honan’s Amazon, Apple, Gmail accounts
– Someone wanted to break into Gmail
– Gmail password reset: Send verification link to backup email

address
• Mat’s was his Apple @me.com account

– Apple password reset: Need billing address, last four of cc
– Amazon's password reset e-mail includes last 4 digits of all

your registered credit cards
– Call Amazon tech support; you can persuade them to add a

new e-mail to any account

• Now attacker can reset Apple password à read Gmail reset e-
mail, reset Gmail password

6

What can go wrong? (1/3)

• Problems with the threat model
– Designer assumed an attack wasn’t feasible or didn’t

anticipate the attack

• e.g. Browser trusts all SSL certificate authorities
– 2011: Two CAs compromised
– 2012: CA inadvertently issued a root certificate valid for

any domain

• e.g. Assuming your hardware is trustworthy
– Firmware malware
– NSA hardware interdiction

7

What can go wrong? (2/3)

• Problems with the mechanism: bugs

• Example: Missing access control checks in Citigroup's credit
card web site
– Login page asks for username and password.
– The URL of the account info page included some numbers.

e.g. x.citi.com/id=1234
• The numbers were (related to) the user's account number.

– Adversary tried different numbers, got different people's
account info

– The server didn't check that you were logged into that
account!

• Lesson: programmers tend to think only of intended operation.

8

What can go wrong? (3/3)

1. Introduction to the design of secure systems

2. Stack smashing buffer overflows and
countermeasures

3. Heap smashing buffer overflows and
countermeasures

9

Today

• Fundamentally hard to prevent all programmer error

• C and C++ particularly dangerous
– Allow arbitrary manipulation of pointers
– Require programmer-directed allocation and freeing of

memory
– Offer high performance, so extremely prevalent,

especially in network servers and OSes

• Java offers memory safety, but not a panacea
– JRE written in (many thousands of lines of) C!

10

Imperfect software

• Buffers (arrays) in C manipulated using pointers
• C allows arbitrary arithmetic on pointers

– Compiler has no notion of size of object pointed to
– Programmers must explicitly check in code that

pointer remains within intended object
– But programmers often do not do so; vulnerability!

• Buffer overflows used in many exploits:
– Input long data that runs past end of programmer’s

buffer, over memory that guides program control flow
– Enclose code you want executed within data
– Overwrite control flow info with address of your code!

11

Buffer overflows in C: General idea

• Text: executable
instructions, read-only data;
size fixed at compile time

• Data: initialized and
uninitialized; grows towards
higher addresses

• Stack: Holds function
arguments and local
variables; grows toward
lower addresses

12

Memory map of a UNIX process

Text

Data

Stack

Increasing m
em

ory addresses à
Grows toward high memory

Grows toward low memory

• Region of stack used within C function: stack frame

• Within function, local variables allocated on stack

• SP register: stack pointer, points to top of stack

• BP register: frame pointer (aka base pointer), points to
bottom of stack frame of currently executing function

13

Intel X86 Stack: Stack Frames

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

14

Intel x86 stack: Function call

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

15

Intel x86 stack: Function call

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

16

Intel x86 stack: Function call

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

ß IP

ß
B

P

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

17

Intel x86 stack: Function call

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

18

Intel x86 stack: Function return

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

• Upon return from f(int,int)

• Deallocate stack frame:
• SP ß SP + sizeof(locals)

–deallocates local vars
• BP ß saved frame pointer

from stack
–change to caller’s stack

frame

• Return to next instruction in caller
• Set IP = saved return

address from stack

• Return address stored on stack directly influences program
control flow

• Stack frame layout: local variables allocated just before
return address

• If programmer allocates buffer as local on stack, reads
input, and writes it into buffer without checking input fits in
buffer:
– Send input containing shellcode you wish to run
– Write past end of buffer, and overwrite return address

with address of your code within stack buffer
– When function returns, your code executes!

19

Stack Smashing Exploits: Basic Idea

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

20

Example: Stack smashing

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

shell code
Malicious

input:

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

21

Example: Stack smashing

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

shell code
Malicious

input:

shell code

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

22

Example: Stack smashing

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

shell code
Malicious

input:

shell code

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

23

Example: Stack smashing

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

shell code
Malicious

input:

shell code

• In our example, attacker had to know
– Existence of stack-allocated buffer without bounds

check in program
– exact address for start of stack-allocated buffer
– exact offset of return address beyond buffer start

• Hard to predict these exact values
– Stack size before call to function containing

vulnerability may vary, changing exact buffer
address

– attacker may not know exact buffer size

• Don’t need to know either exact value, though!

24

Designing a stack smashing exploit

• No need to know exact return address
– Precede shellcode with NOP slide: long sequence

of NOPs (or equivalent instructions)
– So long as jump into NOP slide, shellcode executes
– Effect: range of return addresses works

• No need to know exact offset of return address beyond
buffer start:
– Repeat shellcode’s address many times in input

• If first repetition occurs before return address’s
location on stack, and enough reps, will overwrite it

25

Designing a stack smashing exploit

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

26

Example: Stack smashing “v2.0”

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

shell code
Malicious

input:

shell code

NOP slide

NOP slide

• Always explicitly check input length against target buffer
size

• Avoid C library calls that don’t do length checking:
– e.g., sprintf(buf, ...), scanf(“%s”, buf),
strcpy(buf, input)

• Better:
– snprintf(buf, buflen, ...),
scanf(“%256s”, buf), strncpy(buf, input,
256)

27

Defensive coding to avoid buffer
overflows

• The perfect programmer would check bounds 100% of the
time, but it turns out no programmers are perfect.

• So we need defenses that make make buffer overflows
harder to exploit, for big buggy programs

28

Recap

• Recall from operating systems class: CPU implements
page protection in hardware
– For each 4K memory page, permission bits specified in

page table entry in kernel: read, write

• Central problem in many exploits:
– Code supplied by user in input data
– Execution transferred to user’s input data

• Idea: don’t let CPU execute instructions in data pages
– i.e., each page should either be writable or

executable, but not both
– Text pages: X, not W; stack and heap pages: W, not X

29

W ⊕ X page protection

30

W ⊕ X hole: “Return-to-libc” attack

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

• Instead of putting shellcode on
the stack:
– Just put arguments there

• Data, so okay
– Overwrite ret address to a

well-known library function

• e.g., system(“/bin/sh”)

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

31

W ⊕ X hole: “Return-to-libc” attack

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

“/bin/sh”
Malicious

input:

void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

}

int main(int, char **) {
while (1) {

f(17, 38);
fprintf (log, “done!\n”);

}
}

32

W ⊕ X hole: “Return-to-libc” attack

38

Increasing m
em

ory addresses à

17

main()’s
stack frame

0x1e113a0f
0x1e113a2f

request[256]

“/bin/sh”
Malicious

input:

“/bin/sh”

system()
…

• Central observation: attacker must predict addresses
– e.g., shellcode buffer address, libc function address,

string argument address

• Idea: randomize addresses in process
– With high probability, attacker will guess wrong
– Jump to unmapped memory: crash
– Jump to invalid instruction stream: crash

• Useful as efficient exploit detector
– Memory faults or illegal instructions suggest exploit

33

Address Space Layout
Randomization (ASLR)

• Linux process contains three memory regions:
– Executable: text, init data, uninit data
– Mapped: heap, dynamic (shared) libraries, thread stacks,

shared memory
– Stack: user stack

• ASLR adds random offset to each area when process created
– Efficient; easily supported by virtual memory hardware
– 16, 16, 24 bits randomness, respectively

• Mapped offset limited to 16 bits
– bits 28-31 cannot be changed; would interfere with big

mmap()s
– bits 0-11 cannot be randomized; would make mmap()ed

pages not be page-aligned

34

ASLR Implementation: PaX for Linux

• 16 bits not that big; try to guess random offset added to
mapped area

• Once know random offset, can predict addresses of shared
libraries
– thus libc function addresses
– ...so can mount return-to-libc attack

• Two phases:
– brute-force random offset to mapped area
– compute “derandomized” address of syscall(), use in

return-to-libc attack

35

Derandomization Attack on ASLR
[Shacham, Boneh et al.]

1. Introduction to the design of secure systems

2. Stack smashing buffer overflows and
countermeasures

3. Heap smashing buffer overflows and
countermeasures

36

Today

• Are overflows of heap-allocated buffers exploitable?
– Modern code tends to use the heap a lot

foo() {
char *p = malloc(16);
gets(p);

}

• Can attacker predict what’s after p in memory?

37

Heap attacks

• Some malloc()s lay out
blocks of free/used
memory as:

prev
next
data

prev
next
data

prev
next
data

• malloc keeps free blocks
on a doubly-linked list

• When a free block is
allocated, here's part of
what malloc() does:

b = choose a free block
b->next->prev = b->prev;
b->prev->next = b->next;

38

malloc:A rough primer

• If the attacker overflows a malloc()ed block, the attacker
can modify the next and prev pointers in the next block:

• Suppose attacker writes x y to start of next block
– Call next block b
– then b->prev = x, b->next = y
– Suppose b free and happens to be chosen by next
malloc()
• malloc() will effectively execute *y = x

– Thus writing an attacker-chosen value to any memory
location!

39

Heap smashing

• But, note the pieces the attacker must assemble:

1. Find a buffer overflow bug in the application or library

2. Find a way to get the program to execute the buggy code
in a way that causes attacker's bytes to overflow the buffer

3. Understand malloc() implementation.

4. Find a code pointer and guess its address.

5. Guess the address of the buffer, i.e. attacker's injected
instructions.

40

Heap smashing: Limitations

• Stack Canaries (e.g., StackGuard, gcc stack protection)
– Detects modification of return PC on stack before used
– Compiler generates code that pushes “canary” value on

stack at function entry, pops and checks value before ret
• Canary sits between variables and ret address

– But what if attacker can read/write canary?

• Taint Checking
– Many exploits use data supplied by user to subvert

control flow of program
– Mark all data from user (received from network, or from input

files) as tainted and propagate taint during execution
– Drawback: 25× slowdown

41

Other countermeasures

• Happy Thanksgiving!
• Mon 11/30 Guest Lecture (Tor developer Philipp Winter)
• Then: Traffic analysis and censorship resistance in Tor

– Untrusted Cloud Infrastructure
– Deniable/Stealthy Communication

42

Coming up

