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1. Introduction to the design of secure systems

2. Stack smashing buffer overflows and 
countermeasures

3. Heap smashing buffer overflows and 
countermeasures
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Today



• Secure = achieves some property despite attacks by 
adversaries

• High-level plan for thinking about secure systems:

1. Policy: The goal you want to achieve
– e.g., only Alice should read file F
– Common goals: confidentiality, integrity, availability

2. Threat model: What the attacker can do
– e.g. can guess passwords, cannot physically steal our 

server
3. Mechanism: Software/hardware you system uses to 

enforce security
– e.g. user accounts, passwords, trusted hardware
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Building secure systems



• e.g. grades.txt stored on a shared file server
– Policy: Only course staff may read and write the grades file

• Easy to implement the positive aspect of the policy

• But security is a negative goal
– Want no tricky way for non-staff to get at file
– e.g. exploit a bug in file server's code

• Guess TA’s password
• Steal instructor’s laptop, maybe it has a local copy of the 

grades file. 
• Intercept grades when they are sent over the network to 

the university registrar
• Get a job in the university registrar's office
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Building secure systems is hard



• Cost asymmetry
– “Fortune favors the attacker”
– Secure system designer must protect everything
– Attacker need only find one “hole” 

• Can’t get policies/threats/mechanisms right on first try

• What to do?  Usually iterate: design, watch attacks, update

• What’s the point if we can’t achieve perfect security?
– It’s rarely required
– Make the cost of the attack > value of the information
– Today we’ll look at ways to cut off entire classes of attacks
– Success: Popular attacks ca. 10 years ago no longer fruitful
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Building secure systems is hard (2)



• Problems with the policy itself
– System enforces policy, but the policy is inadequate

• e.g. Wired editor Mat Honan’s Amazon, Apple, Gmail accounts
– Someone wanted to break into Gmail
– Gmail password reset: Send verification link to backup email 

address
• Mat’s was his Apple @me.com account

– Apple password reset: Need billing address, last four of cc
– Amazon's password reset e-mail includes last 4 digits of all 

your registered credit cards
– Call Amazon tech support; you can persuade them to add a 

new e-mail to any account

• Now attacker can reset Apple password à read Gmail reset e-
mail, reset Gmail password
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What can go wrong? (1/3)



• Problems with the threat model
– Designer assumed an attack wasn’t feasible or didn’t 

anticipate the attack

• e.g. Browser trusts all SSL certificate authorities
– 2011: Two CAs compromised
– 2012: CA inadvertently issued a root certificate valid for 

any domain

• e.g. Assuming your hardware is trustworthy
– Firmware malware
– NSA hardware interdiction
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What can go wrong? (2/3)



• Problems with the mechanism: bugs

• Example: Missing access control checks in Citigroup's credit 
card web site
– Login page asks for username and password. 
– The URL of the account info page included some numbers. 

e.g. x.citi.com/id=1234 
• The numbers were (related to) the user's account number. 

– Adversary tried different numbers, got different people's 
account info

– The server didn't check that you were logged into that 
account! 

• Lesson: programmers tend to think only of intended operation.
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What can go wrong? (3/3)
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Today



• Fundamentally hard to prevent all programmer error 

• C and C++ particularly dangerous 
– Allow arbitrary manipulation of pointers 
– Require programmer-directed allocation and freeing of 

memory 
– Offer high performance, so extremely prevalent, 

especially in network servers and OSes

• Java offers memory safety, but not a panacea 
– JRE written in (many thousands of lines of) C!
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Imperfect software



• Buffers (arrays) in C manipulated using pointers 
• C allows arbitrary arithmetic on pointers 

– Compiler has no notion of size of object pointed to
– Programmers must explicitly check in code that 

pointer remains within intended object 
– But programmers often do not do so; vulnerability!

• Buffer overflows used in many exploits: 
– Input long data that runs past end of programmer’s 

buffer, over memory that guides program control flow 
– Enclose code you want executed within data 
– Overwrite control flow info with address of your code!
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Buffer overflows in C: General idea 



• Text: executable 
instructions, read-only data; 
size fixed at compile time 

• Data: initialized and 
uninitialized; grows towards 
higher addresses 

• Stack: Holds function 
arguments and local 
variables; grows toward 
lower addresses 
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Memory map of a UNIX process 
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• Region of stack used within C function: stack frame 

• Within function, local variables allocated on stack 

• SP register: stack pointer, points to top of stack 

• BP register: frame pointer (aka base pointer), points to 
bottom of stack frame of currently executing function 
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Intel X86 Stack: Stack Frames 



void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

} 

int main(int, char **) { 
while (1) {

f(17, 38);
fprintf (log, “done!\n”); 

}
} 
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Intel x86 stack: Function call
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Intel x86 stack: Function return
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• Upon return from f(int,int) 

• Deallocate stack frame: 
• SP ß SP + sizeof(locals)

–deallocates local vars
• BP ß saved frame pointer 

from stack
–change to caller’s stack 

frame 

• Return to next instruction in caller 
• Set IP = saved return 

address from stack



• Return address stored on stack directly influences program 
control flow 

• Stack frame layout: local variables allocated just before 
return address 

• If programmer allocates buffer as local on stack, reads 
input, and writes it into buffer without checking input fits in 
buffer: 
– Send input containing shellcode you wish to run 
– Write past end of buffer, and overwrite return address 

with address of your code within stack buffer 
– When function returns, your code executes!
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Stack Smashing Exploits: Basic Idea



void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;

} 

int main(int, char **) { 
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}
} 
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Example: Stack smashing
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• In our example, attacker had to know
– Existence of stack-allocated buffer without bounds 

check in program
– exact address for start of stack-allocated buffer 
– exact offset of return address beyond buffer start 

• Hard to predict these exact values
– Stack size before call to function containing 

vulnerability may vary, changing exact buffer 
address 

– attacker may not know exact buffer size 

• Don’t need to know either exact value, though!
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Designing a stack smashing exploit 



• No need to know exact return address
– Precede shellcode with NOP slide: long sequence 

of NOPs (or equivalent instructions)
– So long as jump into NOP slide, shellcode executes 
– Effect: range of return addresses works 

• No need to know exact offset of return address beyond 
buffer start: 
– Repeat shellcode’s address many times in input 

• If first repetition occurs before return address’s 
location on stack, and enough reps, will overwrite it 
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Designing a stack smashing exploit



void f(int a, int b) {
char request[256];
scanf(“%s”, request);
/* process request.. */
return;
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int main(int, char **) { 
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}
} 
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Example: Stack smashing “v2.0”
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• Always explicitly check input length against target buffer 
size 

• Avoid C library calls that don’t do length checking: 
– e.g., sprintf(buf, ...), scanf(“%s”, buf), 
strcpy(buf, input) 

• Better: 
– snprintf(buf, buflen, ...), 
scanf(“%256s”, buf), strncpy(buf, input, 
256) 
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Defensive coding to avoid buffer 
overflows



• The perfect programmer would check bounds 100% of the 
time, but it turns out no programmers are perfect.

• So we need defenses that make make buffer overflows 
harder to exploit, for big buggy programs
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Recap



• Recall from operating systems class: CPU implements 
page protection in hardware 
– For each 4K memory page, permission bits specified in 

page table entry in kernel: read, write 

• Central problem in many exploits:
– Code supplied by user in input data
– Execution transferred to user’s input data 

• Idea: don’t let CPU execute instructions in data pages 
– i.e., each page should either be writable or 

executable, but not both
– Text pages: X, not W; stack and heap pages: W, not X 
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W ⊕ X page protection 
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W ⊕ X hole: “Return-to-libc” attack
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well-known library function

• e.g., system(“/bin/sh”)
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W ⊕ X hole: “Return-to-libc” attack
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• Central observation: attacker must predict addresses 
– e.g., shellcode buffer address, libc function address, 

string argument address 

• Idea: randomize addresses in process
– With high probability, attacker will guess wrong 
– Jump to unmapped memory: crash
– Jump to invalid instruction stream: crash 

• Useful as efficient exploit detector
– Memory faults or illegal instructions suggest exploit

33

Address Space Layout 
Randomization (ASLR) 



• Linux process contains three memory regions: 
– Executable: text, init data, uninit data 
– Mapped: heap, dynamic (shared) libraries, thread stacks, 

shared memory 
– Stack: user stack

• ASLR adds random offset to each area when process created
– Efficient; easily supported by virtual memory hardware
– 16, 16, 24 bits randomness, respectively 

• Mapped offset limited to 16 bits
– bits 28-31 cannot be changed; would interfere with big 

mmap()s 
– bits 0-11 cannot be randomized; would make mmap()ed

pages not be page-aligned 
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ASLR Implementation: PaX for Linux 



• 16 bits not that big; try to guess random offset added to 
mapped area 

• Once know random offset, can predict addresses of shared 
libraries 
– thus libc function addresses
– ...so can mount return-to-libc attack 

• Two phases: 
– brute-force random offset to mapped area 
– compute “derandomized” address of syscall(), use in 

return-to-libc attack
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Derandomization Attack on ASLR 
[Shacham, Boneh et al.]
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Today



• Are overflows of heap-allocated buffers exploitable?
– Modern code tends to use the heap a lot

foo() { 
char *p = malloc(16);
gets(p);

}

• Can attacker predict what’s after p in memory?
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Heap attacks



• Some malloc()s lay out 
blocks of free/used 
memory as:

prev
next
data 
----
prev 
next 
data 
----
prev 
next 
data

• malloc keeps free blocks 
on a doubly-linked list

• When a free block is 
allocated, here's part of 
what malloc() does: 

b = choose a free block 
b->next->prev = b->prev; 
b->prev->next = b->next;
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malloc:A rough primer



• If the attacker overflows a malloc()ed block, the attacker 
can modify the next and prev pointers in the next block:

• Suppose attacker writes x y to start of next block
– Call next block b
– then b->prev = x, b->next = y
– Suppose b free and happens to be chosen by next 
malloc()
• malloc() will effectively execute *y = x 

– Thus writing an attacker-chosen value to any memory 
location!

39

Heap smashing



• But, note the pieces the attacker must assemble:

1. Find a buffer overflow bug in the application or library

2. Find a way to get the program to execute the buggy code 
in a way that causes attacker's bytes to overflow the buffer

3. Understand malloc() implementation.

4. Find a code pointer and guess its address.

5. Guess the address of the buffer, i.e. attacker's injected 
instructions.
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Heap smashing: Limitations



• Stack Canaries (e.g., StackGuard, gcc stack protection)
– Detects modification of return PC on stack before used
– Compiler generates code that pushes “canary” value on 

stack at function entry, pops and checks value before ret
• Canary sits between variables and ret address

– But what if attacker can read/write canary?

• Taint Checking
– Many exploits use data supplied by user to subvert 

control flow of program 
– Mark all data from user (received from network, or from input 

files) as tainted and propagate taint during execution
– Drawback: 25× slowdown
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Other countermeasures



• Happy Thanksgiving!
• Mon 11/30 Guest Lecture (Tor developer Philipp Winter)
• Then: Traffic analysis and censorship resistance in Tor

– Untrusted Cloud Infrastructure
– Deniable/Stealthy Communication
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Coming up


