
Designing for 
Performance:
Concurrency and 
Parallelism

COS 518: Computer Systems
Fall 2015

Logan Stafman
Adapted from slides by Mike Freedman



Definitions

• Concurrency:  
– Execution of two or more tasks overlap in 

time.

• Parallelism:  
– Execution of two or more tasks occurs 

simultaneous.

2



Concurrency without 
parallelism?

• Parts of tasks interact with other 
subsystem
– Network I/O, Disk I/O, GPU, ...

• Other task can be scheduled while 
first waits on subsystem’s response

3



Source: 
bjoor.me

Concurrency without 
parrallelism?



Scheduling for fairness

• On time-sharing system also want to 
schedule between tasks, even if one not 
blocking
– Otherwise, certain tasks can keep processing
– Leads to starvation of other tasks

• Preemptive scheduling
– Interrupt processing of tasks to process another 

task  (why with tasks and not network packets?)
• Many scheduling disciplines

– FIFO, Shortest Remaining Time, Strict Priority, 
Round-Robin

5



Source: embeddedlinux.org.cn

Preemptive Scheduling



Concurrency with 
parallelism

• Execute code concurrently across 
CPUs
– Clusters
– Cores

• CPU parallelism different from 
distributed systems as ready 
availability to shared memory
– Yet to avoid difference between 

parallelism b/w local and remote cores, 
many apps just use message passing 
between both (like HPC’s use of MPI)

7



Symmetric Multiprocessors 
(SMPs)

8



Non-Uniform Memory Architectures 
(NUMA)

9



Pros/Cons of NUMA
10

• Pros
 Applications split between different 

processors can share memory close 
to hardware

 Reduced bus bandwidth usage
• Cons

 Must ensure applications sharing 
memory are run on processors 
sharing memory



Forms of task parallelism 

• Processes
– Isolated process address space
– Higher overhead between switching processes

• Threads
– Concurrency within process
– Shared address space
– Three forms

• Kernel threads (1:1) :  Kernel support, can leverage 
hardware parallelism

• User threads (N:1):  Thread library in system runtime, 
fastest context switching, but cannot benefit from multi-
threaded/proc hardware

• Hybrid (M:N): Schedule M user threads on N kernel 
threads. Complex.

11



Programming with threads

• Multithreaded version:

webserverLoop() {
  newconn = accept();
  ThreadCreate(processReq(), newconn);

}

• Advantages of threaded version:
– Can share file caches kept in memory, results of 

CGI scripts, ...
– What if too many requests come in at once?

12



Dispatching packets to 
processes

• Network interrupts run at higher kernel 
priority than user-level tasks
– Can lead to Receiver Livelock:  All effort on 

receiving packets, no real work done
• Types of dispatch

– Interrupts:   One per network packet
– Interrupt Coalescing:  Wait for several pkts 

or timeout
– poll:  Make the user space / OS ask you

13



Livelock with threadCreate

• Cost of new threads < new proc, but still not 
free

• How much useful concurrency can you 
support?
– If hardware support, # cores * # hyperthreads
– Also, depends on I/O patterns of computation (e.g. 

how much threads pause on externel I/O)
• So if you keep getting new connections

– ...and keep creating new threads per connection
– ...much faster than you can complete threads...
– ...driven to livelock

14



Thread Pools

master() {
  allocThreads(slave,queue);
  while(TRUE) {
      conn=accept();
      enqueue(queue,conn);
      wakeUp(queue);
  }
}

slave(queue) {
   while(TRUE) {
      conn=Dequeue(queue);
      if (conn==null)
         sleepOn(queue);
      else
         processReq(conn);
   }
}

Master
Thread

Thread Pool

queue



Thread Pools

• How to choose how many threads are 
appropriate in your thread pool?



Parallelizing the NIC

• Where does master thread (recv) run?
• How is state transferred in multi-core 

machine?
• Higher performance if state doesn’t 

need to be xferred between 
cores/CPUs

• Multi-queue NIC
– ~O(100) queues in the NIC
– Flow-hashing to map flows to NIC queues
– One thread per (v)core to receive
– Multiple threads per core to process

17



Writing Threads vs. Events
conn = accept()
read(conn, inbuf, inlen)
webobj = parse_http(inbuf)
filefd = open(webobj.getLocalFilename())
if (filefd < 0)

send(conn, 404Object())
else {

send(conn, HttpHeaders())
read(filefd, filebuf, len)
while (len != EOF) {

send(conn, filebuf, len)
read(fd, filebuf, len)

}}
close(filefd)
close(conn)

18



Writing Threads vs. Events
conn = accept()
read(conn, inbuf, inlen)
webobj = parse_http(inbuf)
filefd = open(webobj.getLocalFilename())
if (filefd < 0)

send(conn, 404Object())
else {

send(conn, HttpHeaders())
read(filefd, filebuf, len)
while (len != EOF) {

send(conn, filebuf, len)
read(fd, filebuf, len)

}}
close(filefd)
close(conn)

19



Async IO and event-based 
programming

• Events and async IO
– select
– Callbacks and stack ripping
– State across callbacks (function currying)
– libasync

• Async IO and multithreads
– Boost’s asio strand model

20


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

