
Scaling Out Systems

COS 518: Advanced Computer Systems
Lecture 6

Kyle Jamieson

[Credits: Selected content adapted from M. Freedman, B. Karp, R. Morris]

1. Scaling up: Reliable multicast

2. Scaling out: Partitioning, DHTs and Chord

2

Today

Recall the tradeoffs
• CAP: Distributed systems can have 2 of the following 3:

– Consistency (Strong/Linearizability)
– Availability
– Partition Tolerance: Liveness despite arbitrary failures

• Bit of an oversimplification. Really: When you get P, do you
choose A or C?

• Goal? ALPS (Coined by Lloyd and Freedman, 2011)
– Available
– Low-Latency
– Partition-Tolerant
– Scalable (to more than 1 “CPU” per site)

3

• [Fastly CDN]

• CDN servers geographically distributed containing many
replicas of data

• Want to give cusomters the ability to takedown content in a
short period of time from across the CDN

• Your sales team advertises 150 ms takedown latency

4

Reliable multicast motivation:
Fast content purging in a CDN

• Reliable Multicast Transport Protocol (RMTP)
• Scalable Reliable Multicast (SRM)

• Sequenced, lossless bulk delivery of data from one sender
to a group of receivers

• TCP-like cumulative sequence numbers on data
• Sequence numbers and bitmaps in acknowledgement

packets back to sender
• Window-based flow control
• Retransmissions, failure monitoring among receivers

5

Reliable multicast protocols

Reliable multicast performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

“Sleep” time (fraction) of ONE group member

Av
er

ag
e

th
ro

ug
hp

ut
 o

n
no

np
er

tu
rb

ed
m

em
be

rs
group size: 32
group size: 64
group size: 96

• pbcast: Probabilistic broadcast
– Birman et al., ACM ToCS 17(2) 1999

• Atomicity property is the bimodal delivery guarantee:
– High probability that each multicast will reach almost all

processes
– Low probability that a multicast will reach just a very

small set of processes
– Vanishingly small probability that it will reach some

intermediate number of processes

• The traditional “all or nothing” guarantee thus becomes
“almost all or almost none.”

7

Bimodal multicast

Initially use UDP/IP best effort multicast

Bimodal multicast (1/4)

• Periodically (e.g. every 100ms):

• Each node picks random group member, and
send digest describing its state

Bimodal multicast (2/4)

• Recipient checks digest against own history

• For all missing message, solicits copy of msg

Bimodal multicast (3/4)

• Nodes respond to solicitations by retransmitting
requested message(s)

Bimodal multicast (4/4)

• Two phases? Nope…
• Description of dual “modes” of result

Why “bimodal?”

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
} Either

sender
fails…

… or data
gets thru

w.h.p.

• Assume a fixed population of size n

• For simplicity, assume “epidemic” (delivery) spreads
homogenously through popularly
– Simple randomized delivery: any one can deliver to any

one with equal probability

• Assume that k members are already delivered

• Delivery occurs in rounds

Epidemic algorithms via gossiping

Probability of delivery
• Probability Pdeliver(k,n) that a undelivered member is

delivered to in a round, if k are already infected?

Pdeliver(k,n) = 1 – P (nobody delivers)
= 1 – (1 – 1/n)k

E [# newly delivered] = (n − k) ×Pdeliver(k,n)

• Basically it’s a Binomial distribution

• # rounds to deliver to the entire population is O(log n)

• Gossip pull (“anti-entropy”)
– A asks B for something it is trying to “find”
– Commonly used for management replicated data

• Resolve differences between DBs by comparing digests

• Gossip push (“rumor mongering”):
– A tells B something B doesn’t know
– Gossip for multicasting

• Keep sending for bounded period of time: O (log n)
– Also used to compute aggregates

• Push-pull gossip
– Combines both mechanisms
– O(n log log n) msgs to spread rumor in O(log n) time

Two prevailing styles

• Problem: Collaborative applications
– E.g., Meeting room scheduling, bibliographic database

• Setting:
– Mobile computing environment
– Seek to support disconnected workgroups
– Rely only on weak/opportunistic connectivity

(occasional, pair-wise communication)

• Key technical problem: How to converge to (eventually)
consistent state?
– Use anti-entropy for pair-wise resolution
– Observation: Need application-specific conflict detection

and resolution at granularity of individual updates

Wednesday reading: Bayou

1. Scaling up: Reliable multicast

2. Scaling out: Partitioning, DHTs and Chord

17

Today

• Every data object belongs to data “partition”

• Each partition resides on one or more nodes
– Replication protocol between nodes hosting partition,

e.g., could be strong or eventually consistent

• Every node hosts one or more partition

18

Scaling out by partitioning data

19

What is a DHT?
• Single-node hash table abstract:

key = Hash(name)
put(key, value)
get(key) à value
– Service: O(1) storage

• How do I do this across millions of hosts on the Internet?
– Distributed Hash Table

20

What Is a DHT? (and why?)
• Distributed Hash Table:
key = Hash(data)
lookup(key) à IP address (Chord)
send-RPC(IP address, PUT, key, value)
send-RPC(IP address, GET, key) à value

• The first step towards truly large-scale distributed
systems
– a tuple in a global database engine
– a data block in a global file system
– rare.mp3 in a P2P file-sharing system

• Application may be distributed over many nodes

• DHT distributes data storage over many nodes

21

DHT Factoring

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

• API supports a wide range of applications
– DHT imposes no structure/meaning on keys

• Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures

22

Why the put()/get() DHT interface?

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

• General-purpose: flexible naming

23

Why might DHT design be hard?

24

The Lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Put (Key=“title”
Value=file data…)

Client
Get(key=“title”)

?

• At the heart of all DHTs

25

Motivation: Centralized lookup (Napster)

Publisher@
Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4

26

Motivation: Flooded Queries (Gnutella)

N4Publisher@
Client

N6

N9

N7 N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=file data…

Lookup(“title”)

27

Motivation: FreeDB, Routed DHT
Queries (Chord, &c.)

N4Publisher
Client

N6

N9

N7 N8

N3

N2N1

Lookup(H(audio data))

Key=H(audio
data)

Value={artist,
album
title,

track title}

• They’re not just for stealing music anymore…
– global file systems [OceanStore, CFS, PAST, Pastiche,

UsenetDHT]
– naming services [Chord-DNS, Twine, SFR]
– DB query processing [PIER, Wisc]
– Internet-scale data structures [PHT, Cone, SkipGraphs]
– communication services [i3, MCAN, Bayeux]
– event notification [Scribe, Herald]
– File sharing [OverNet]

28

DHT Applications

• Require two features:
– Partition management:

• On which node(s) to place a partition
• Including how to recover from a node failure, e.g.,

bringing another node into partition group
• Changes in system size, e.g., nodes joining and

leaving
– Resolution:

• Maintain mapping from data name to responsible
node(s)

• Centralized: Cluster manager
• Decentralized: Deterministic hashing and algorithms

29

Basic Approaches

• Consider problem of data partition:
– Given document X, choose one of k servers to use

• Suppose we use modulo hashing
– Number servers 1..k
– Place X on server i = (X mod k)

• Problem? Data may not be uniformly distributed
– Place X on server i = hash (X) mod k

• Problem? What happens if a server fails or joins (k à
k±1)?

• Problem? What if different clients have different
estimate of k?

• Answer: All entries get remapped to new nodes!

30

The partitioning problem

• How to determine the server on which a certain object
resides?

• Typical approach: Hash the object’s identifier

• Hash function h maps object id x to a server id
– E.g., h(x) = [ax + b (mod p)] , where

• p is a prime integer

• a, b are constant integers chosen uniformly at
random from [0, p − 1]

• x is an object’s serial number

Placing objects on servers

Difficulty: Changing number of
servers

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Add one machine: h(x) = x + 1 (mod 5)

Adding a machine results in all objects’ assignments
changing: need to move objects over the network.

• Interface: lookup(key) → IP address

• Efficient: O(log N) messages per lookup
– N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

• Simple to analyze

33

Chord Lookup Algorithm Properties

• Key identifier = SHA-1(key)

• Node identifier = SHA-1(IP address)

• SHA-1 distributes both uniformly

• How does Chord partition data?
– i.e., map key IDs to node IDs

34

Chord IDs

35

Consistent hashing [Karger ‘97]

A key is stored at its successor: node with next-higher ID
K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5
Node 105

36

Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

37

Simple lookup algorithm
Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id // next hop
call Lookup(key-id) on node n
else // done
return n

• Correctness depends only on successors

38

“Finger Table” Allows log(N)-time Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

39

Finger i Points to Successor of n+2i−1

N80

½¼

1/8

1/16
1/32
1/64
1/128

112
N120

40

Lookup with Fingers

Lookup(my-id, key-id)
look in local finger table for
highest node n: my-id < n < key-id
if n exists
call Lookup(key-id) on node n // next hop
else
return my successor // done

41

Lookups Take O(logN) Hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Join Operation

4

20

3235

8

15

44

58

50

n N50 joins the ring via
N15

n N50: send join(50) to
N15

n N44: returns N58

n N50 updates its
successor to N58

join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

42

Periodic Stabilize

4

20

3235

8

15

44

58

50

n N50: periodic
stabilize
n Sends stabilize

message to
N58

n N50: send notify
message to N58
n Update pred=44

succ=58
pred=nil

succ=58
pred=35

succ.pred=44

pred=50
succ=4
pred=44

stabilize(node=50)
notify(node=50)

43

Periodic Stabilize

4

20

3235

8

15

44

58

50

n N44: periodic stabilize

n N44 Asks N58 for pred à
N50

n N44 updates successor to
N50

succ=58
stabilize(node=44)

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

44

Periodic Stabilize

4

20

3235

8

15

44

58

50

n N44 has a new successor:
N50

n N44 notifies N50
succ=58

succ=50

notify(node=44)
pred=44

pred=50

pred=35

succ=4

pred=nil

45

Periodic Stabilize Converges!

4

20

3235

8

15

44

58

50

n This completes the
joining operation!

succ=58

succ=50

pred=44

pred=50

46

47

Joining: Linked List Insert

N36

N40

N25

1. Lookup(36)
K30
K38

48

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

49

Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

50

Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

• Predecessor pointer allows link to new node
• Update finger pointers in the background

• Correct successors produce correct lookups

K30
K38

K30

51

Failures Might Cause Incorrect Lookup

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

52

Solution: Successor Lists

• Each node knows r immediate successors
• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee is with some probability

53

Choosing Successor List Length
• Assume ½ the nodes fail

• P(successor list all dead) = (½)r
– i.e., P(this node breaks the Chord ring)
– Depends on independent failure

• Successor list of size r = O(log N) makes this probability
1/N: low for large N

54

Lookup with Fault Tolerance

Lookup(my-id, key-id)
look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id

if n exists
call Lookup(key-id) on node n // next hop
if call failed,

remove n from finger table or successor-list
return Lookup(my-id, key-id)

else return my successor // done

55

Experimental Overview
• Quick lookup in large systems
• Low variation in lookup costs
• Robust despite massive failure

Experiments confirm theoretical results

56

Chord Lookup Cost Is O(log N)

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r L
oo

ku
p

Constant is 1/2

57

Failure Experimental Setup
• Start 1,000 CFS/Chord servers

– Successor list has 20 entries
• Wait until they stabilize
• Insert 1,000 key/value pairs

– Five replicas of each
• Stop X% of the servers
• Immediately perform 1,000 lookups

58

DHash Replicates Blocks at r
Successors

N40

N10
N5

N20

N110

N99

N80
N60

N50

Block
17

N68

• Replicas are easy to find if successor fails
• Hashed node IDs ensure independent failure

59

Massive Failures Have Little Impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

60

DHash summary
• Builds key/value storage on Chord

• Replicates blocks for availability
– Stores k replicas at the k successor servers after the

block’s successor on the Chord ring

• Caches blocks for load balance
– Client sends copy of block to each of the servers it

contacted along the lookup path

• Authenticates block contents

• Original DHTs (CAN, Chord, Kademlia, Pastry, Tapestry)
proposed in 2001-02

• Following 5-6 years saw proliferation of DHT-based
applications:
– filesystems (e.g., CFS, Ivy, Pond, PAST)
– naming systems (e.g., SFR, Beehive)
– indirection/interposition systems (e.g., i3, DOA)
– content distribution systems (e.g., Coral)
– distributed databases (e.g., PIER)

61

DHTs: A Retrospective

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Dynamo,

FAWN-KV, ROAR, …
• Replication for high availability, efficient recovery after

node failure
• Incremental scalability: “add nodes, capacity increases”
• Self-management: minimal configuration

• Unique trait: no single server to shut down, control, monitor
– …well suited to “illegal” applications, be they sharing

music or resisting censorship

62

What DHTs Got Right

DHTs’ limitations
• High latency between peers

• Limited bandwidth between peers (as compared to within a
cluster)

• Lack of trust in peers’ correct behavior
– securing DHT routing hard, unsolved in practice

63

• Wednesday 10/28 Paper Discussion: Weakening
Consistency

• Bayou, Dynamo, Eiger

64

Next time

