
Scaling Out Systems

COS 518: Advanced Computer Systems
Lecture 6

Kyle Jamieson

[Credits: Selected content adapted from M. Freedman, B. Karp, R. Morris]



1. Scaling up: Reliable multicast

2. Scaling out: Partitioning, DHTs and Chord
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Today



Recall the tradeoffs
• CAP: Distributed systems can have 2 of the following 3:

– Consistency (Strong/Linearizability)
– Availability
– Partition Tolerance: Liveness despite arbitrary failures

• Bit of an oversimplification.  Really: When you get P, do you 
choose A or C?

• Goal?   ALPS (Coined by Lloyd and Freedman, 2011)
– Available
– Low-Latency
– Partition-Tolerant
– Scalable (to more than 1 “CPU” per site)
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• [Fastly CDN]

• CDN servers geographically distributed containing many 
replicas of data

• Want to give cusomters the ability to takedown content in a 
short period of time from across the CDN

• Your sales team advertises 150 ms takedown latency
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Reliable multicast motivation: 
Fast content purging in a CDN



• Reliable Multicast Transport Protocol (RMTP)
• Scalable Reliable Multicast (SRM)

• Sequenced, lossless bulk delivery of data from one sender 
to a group of receivers

• TCP-like cumulative sequence numbers on data
• Sequence numbers and bitmaps in acknowledgement 

packets back to sender
• Window-based flow control
• Retransmissions, failure monitoring among receivers
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Reliable multicast protocols



Reliable multicast performance
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• pbcast: Probabilistic broadcast
– Birman et al., ACM ToCS 17(2) 1999

• Atomicity property is the bimodal delivery guarantee:
– High probability that each multicast will reach almost all 

processes
– Low probability that a multicast will reach just a very 

small set of processes
– Vanishingly small probability that it will reach some 

intermediate number of processes

• The traditional “all or nothing” guarantee thus becomes 
“almost all or almost none.”
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Bimodal multicast



Initially use UDP/IP best effort multicast

Bimodal multicast (1/4)



• Periodically (e.g. every 100ms):

• Each node picks random group member, and 
send digest describing its state

Bimodal multicast (2/4)



• Recipient checks digest against own history

• For all missing message, solicits copy of msg

Bimodal multicast (3/4)



• Nodes respond to solicitations by retransmitting
requested message(s)  

Bimodal multicast (4/4)



• Two phases?  Nope…
• Description of dual “modes” of result

Why “bimodal?”

Pbcast bimodal delivery distribution
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• Assume a fixed population of size n

• For simplicity, assume “epidemic” (delivery) spreads 
homogenously through popularly
– Simple randomized delivery: any one can deliver to any 

one with equal probability

• Assume that k members are already delivered

• Delivery occurs in rounds

Epidemic algorithms via gossiping



Probability of delivery
• Probability Pdeliver(k,n) that a undelivered member is 

delivered to in a round, if k are already infected?

Pdeliver(k,n) =  1 – P (nobody delivers)
=  1 – (1 – 1/n)k

E [# newly delivered] = (n − k) ×Pdeliver(k,n)

• Basically it’s a Binomial distribution

• # rounds to deliver to the entire population is O(log n)



• Gossip pull (“anti-entropy”)
– A asks B for something it is trying to “find”
– Commonly used for management replicated data

• Resolve differences between DBs by comparing digests

• Gossip push (“rumor mongering”):
– A tells B something B doesn’t know
– Gossip for multicasting

• Keep sending for bounded period of time: O (log n) 
– Also used to compute aggregates

• Push-pull gossip
– Combines both mechanisms
– O(n log log n) msgs to spread rumor in O(log n) time

Two prevailing styles



• Problem: Collaborative applications
– E.g., Meeting room scheduling, bibliographic database

• Setting:
– Mobile computing environment
– Seek to support disconnected workgroups
– Rely only on weak/opportunistic connectivity 

(occasional, pair-wise communication)

• Key technical problem:  How to converge to (eventually) 
consistent state?
– Use anti-entropy for pair-wise resolution
– Observation:  Need application-specific conflict detection 

and resolution at granularity of individual updates

Wednesday reading: Bayou



1. Scaling up: Reliable multicast

2. Scaling out: Partitioning, DHTs and Chord
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Today



• Every data object belongs to data “partition”

• Each partition resides on one or more nodes
– Replication protocol between nodes hosting partition, 

e.g., could be strong or eventually consistent

• Every node hosts one or more partition
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Scaling out by partitioning data
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What is a DHT?
• Single-node hash table abstract:

key = Hash(name)
put(key, value)
get(key) à value
– Service: O(1) storage

• How do I do this across millions of hosts on the Internet?
– Distributed Hash Table
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What Is a DHT? (and why?)
• Distributed Hash Table:
key = Hash(data)
lookup(key) à IP address (Chord)
send-RPC(IP address, PUT, key, value)
send-RPC(IP address, GET, key) à value

• The first step towards truly large-scale distributed 
systems
– a tuple in a global database engine
– a data block in a global file system
– rare.mp3 in a P2P file-sharing system



• Application may be distributed over many nodes

• DHT distributes data storage over many nodes
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DHT Factoring

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)



• API supports a wide range of applications
– DHT imposes no structure/meaning on keys

• Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures
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Why the put()/get() DHT interface?



• Decentralized: no central authority

• Scalable: low network traffic overhead 

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

• General-purpose: flexible naming
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Why might DHT design be hard?
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The Lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Put (Key=“title”
Value=file data…)

Client
Get(key=“title”)

?

• At the heart of all DHTs



25

Motivation: Centralized lookup (Napster)

Publisher@
Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4
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Motivation: Flooded Queries (Gnutella)

N4Publisher@
Client

N6

N9

N7 N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=file data…

Lookup(“title”)
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Motivation: FreeDB, Routed DHT 
Queries (Chord, &c.)

N4Publisher
Client

N6

N9

N7 N8

N3

N2N1

Lookup(H(audio data))

Key=H(audio 
data)

Value={artist, 
album 
title,

track title}



• They’re not just for stealing music anymore…
– global file systems [OceanStore, CFS, PAST, Pastiche, 

UsenetDHT]
– naming services [Chord-DNS, Twine, SFR]
– DB query processing [PIER, Wisc]
– Internet-scale data structures [PHT, Cone, SkipGraphs]
– communication services [i3, MCAN, Bayeux]
– event notification [Scribe, Herald]
– File sharing [OverNet]
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DHT Applications



• Require two features:
– Partition management:  

• On which node(s) to place a partition
• Including how to recover from a node failure, e.g., 

bringing another node into partition group
• Changes in system size, e.g., nodes joining and 

leaving
– Resolution:  

• Maintain mapping from data name to responsible 
node(s)

• Centralized:  Cluster manager
• Decentralized:  Deterministic hashing and algorithms
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Basic Approaches



• Consider problem of data partition:  
– Given document X, choose one of k servers to use

• Suppose we use modulo hashing
– Number servers 1..k
– Place X on server i = (X mod k)

• Problem?  Data may not be uniformly distributed
– Place X on server i = hash (X) mod k

• Problem? What happens if a server fails or joins (k à
k±1)?

• Problem? What if different clients have different 
estimate of k?

• Answer:  All entries get remapped to new nodes!
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The partitioning problem



• How to determine the server on which a certain object 
resides?

• Typical approach: Hash the object’s identifier

• Hash function h maps object id x to a server id
– E.g., h(x) = [ax + b (mod p)] , where

• p is a prime integer

• a, b are constant integers chosen uniformly at 
random from [0, p − 1]

• x is an object’s serial number

Placing objects on servers



Difficulty: Changing number of 
servers

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Add one machine: h(x) = x + 1 (mod 5)

Adding a machine results in all objects’ assignments 
changing: need to move objects over the network.



• Interface: lookup(key) → IP address

• Efficient: O(log N) messages per lookup
– N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

• Simple to analyze
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Chord Lookup Algorithm Properties



• Key identifier = SHA-1(key)

• Node identifier = SHA-1(IP address)

• SHA-1 distributes both uniformly

• How does Chord partition data?
– i.e., map key IDs to node IDs
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Chord IDs
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Consistent hashing [Karger ‘97]

A key is stored at its successor: node with next-higher ID
K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5
Node 105
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Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”
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Simple lookup algorithm
Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id     // next hop
call Lookup(key-id) on node n
else   // done
return n

• Correctness depends only on successors
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“Finger Table” Allows log(N)-time Lookups
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Finger i Points to Successor of n+2i−1
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Lookup with Fingers

Lookup(my-id, key-id)
look in local finger table for
highest node n: my-id < n < key-id
if n exists
call Lookup(key-id) on node n // next hop
else
return my successor // done
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Lookups Take O(logN) Hops
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Join Operation
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n N50 joins the ring via 
N15

n N50: send join(50) to 
N15

n N44: returns N58

n N50 updates its 
successor to N58

join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58
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Periodic Stabilize
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n N50: periodic 
stabilize
n Sends stabilize 

message to 
N58

n N50: send notify 
message to N58
n Update pred=44

succ=58
pred=nil

succ=58
pred=35

succ.pred=44

pred=50
succ=4
pred=44

stabilize(node=50)
notify(node=50)
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Periodic Stabilize
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n N44: periodic stabilize

n N44 Asks N58 for pred à
N50

n N44 updates successor to 
N50

succ=58
stabilize(node=44)

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35
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Periodic Stabilize
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n N44 has a new successor: 
N50

n N44 notifies N50
succ=58

succ=50

notify(node=44)
pred=44

pred=50

pred=35

succ=4

pred=nil
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Periodic Stabilize Converges!
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Joining: Linked List Insert

N36
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N25

1. Lookup(36)
K30
K38
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Join (2)
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2. N36 sets its own
successor pointer

K30
K38
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Join (3)
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Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

• Predecessor pointer allows link to new node
• Update finger pointers in the background

• Correct successors produce correct lookups

K30
K38

K30
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Failures Might Cause Incorrect Lookup

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)
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Solution: Successor Lists

• Each node knows r immediate successors
• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee is with some probability
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Choosing Successor List Length
• Assume ½ the nodes fail

• P(successor list all dead) = (½)r
– i.e., P(this node breaks the Chord ring)
– Depends on independent failure

• Successor list of size r = O(log N) makes this probability 
1/N: low for large N
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Lookup with Fault Tolerance

Lookup(my-id, key-id)
look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id

if n exists
call Lookup(key-id) on node n // next hop
if call failed,

remove n from finger table or successor-list
return Lookup(my-id, key-id)

else return my successor // done
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Experimental Overview
• Quick lookup in large systems
• Low variation in lookup costs
• Robust despite massive failure

Experiments confirm theoretical results
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Chord Lookup Cost Is O(log N)
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Failure Experimental Setup
• Start 1,000 CFS/Chord servers

– Successor list has 20 entries
• Wait until they stabilize
• Insert 1,000 key/value pairs

– Five replicas of each
• Stop X% of the servers
• Immediately perform 1,000 lookups
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DHash Replicates Blocks at r
Successors
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• Replicas are easy to find if successor fails
• Hashed node IDs ensure independent failure 
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Massive Failures Have Little Impact
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DHash summary
• Builds key/value storage on Chord

• Replicates blocks for availability
– Stores k replicas at the k successor servers after the 

block’s successor on the Chord ring 

• Caches blocks for load balance
– Client sends copy of block to each of the servers it 

contacted along the lookup path

• Authenticates block contents



• Original DHTs (CAN, Chord, Kademlia, Pastry, Tapestry) 
proposed in 2001-02

• Following 5-6 years saw proliferation of DHT-based 
applications:
– filesystems (e.g., CFS, Ivy, Pond, PAST)
– naming systems (e.g., SFR, Beehive)
– indirection/interposition systems (e.g., i3, DOA)
– content distribution systems (e.g., Coral)
– distributed databases (e.g., PIER)
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DHTs: A Retrospective



• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Dynamo, 

FAWN-KV, ROAR, …
• Replication for high availability, efficient recovery after 

node failure
• Incremental scalability: “add nodes, capacity increases”
• Self-management: minimal configuration

• Unique trait: no single server to shut down, control, monitor
– …well suited to “illegal” applications, be they sharing 

music or resisting censorship
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What DHTs Got Right



DHTs’ limitations
• High latency between peers

• Limited bandwidth between peers (as compared to within a 
cluster)

• Lack of trust in peers’ correct behavior
– securing DHT routing hard, unsolved in practice

63



• Wednesday 10/28 Paper Discussion: Weakening 
Consistency

• Bayou, Dynamo, Eiger
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Next time


