
Fault-Tolerance I: Atomicity, 
logging, and recovery 

COS 518: Advanced Computer Systems 
Lecture 3  

Kyle Jamieson 



•  Building reliable systems from unreliable components 

•  Three basic steps: 

1.  Error detection: Discovering the presence of an error in a 
data value or control signal 

2.  Error containment: Limiting error propagation distance 

3.  Error masking: Adding redundancy for correct operation 
despite the error (possibly correct error) 
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What is fault tolerance? 



•  Say one bit in a DRAM fails: 

•  …it flips a bit in a memory address the 
kernel is writing to.  Causes big memory 
error elsewhere, or a kernel panic 

•  …program is running one of many 
distributed file system storage servers 

•  …a client can’t read from FS, so it hangs 

Why is achieving fault tolerance hard? 

Failures 
Propagate 
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1.  Do nothing: Silently return the failure 

2.  Be fail-fast: Detect the failure and report at interface 
–  e.g., Ethernet station jams medium on detecting collision 

3.  Be fail-safe: Transform incorrect à acceptable values 
– Failed traffic light controller switches to blinking-red 

4.  Mask the failure 
–  e.g. retry op for transient errors, use error-correcting 

code for bit flips, replicate data in multiple places 
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So what to do? 



•  You’ve already seen some in this and other classes 
–   e.g., retransmissions in TCP and RPC 

•  Modularity can isolate failures 
– Prevent error in one component from spreading 

•  We’ll discuss two families of failure-masking techniques: 
– Atomicity, logging, and recovery on one server 
– Replication and consistency across multiple servers 

Techniques to cope with failures 
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1.  Identify every fault, quantify probability of occurrence 

2.  Apply modularity to contain damage from high-risk errors 

3.  Design and implement fault tolerance procedures 

•  Iterate twice on this procedure: 
– Once to account for reduction of faults from fault 

tolerance procedures 
– A second time to run the system in situ, improve and revise 

The fault tolerance design process 
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•  Techniques for coping with failures: 
 
1.  Failures, reliability, and durability 
 
2.  Atomicity 

3.  Case study: System R DBMS recovery manager 
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Today 



•  A component operates correctly for some time, fails, is 
repaired, then the cycle repeats (run-fail-repair cycle) 
– So, time to failure and time to repair are quantities of 

interest.  Averaging over multiple run-fail-repair cycles: 
• Mean time to failure (MTTF) 
• Mean time to repair (MTTR) 

– Availability: MTTF / (MTTF + MTTR) = 1 − Down time 
– Mean time between failures: MTBF = MTTF + MTTR 

•  e.g.: suppose an OS crashes once per month and takes 
ten minutes to reboot 
– MTTF = 720 hours = 43,200 min,  MTTR = 10 min 
– Availability = 43,200 / 43,210 = 0.997 (“two nines”), or two 

hours down time / year 

Measuring the availability of a 
system component 
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•  Carrier airlines (2002 FAA fact book) 
–  41 accidents, 6.7M departures 
–  99.9993% (five nines) availability 

•  911 Phone service (1993 NRIC report) 
–  29 minutes per line per year 
–  99.994% (four nines) availability 

•  Standard phone service (various sources) 
–  53+ minutes per line per year 
–  99.99+% (> four nines) availability 

•  End-to-end Internet Availability 
–  95% - 99.6% (one to two nines) availability 

Availability in practice 
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1.  Are failures independent? 
– Q: If the failure probability of a computer in a rack is p, 

what is Pr(computer 2 failing | computer 1 failed)? 
– A: Maybe it’s p... but plugged into same rack power strip, 

where several racks share same UPS? 
•  And servers also share same network switch, which 

in turn share same border gateway routers? 

2.  Do failures follow a memory-less process? 
–  Hard disk label advises “expected operational lifetime” 

of five years… 

Two cautions 
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•  What’s the probability the component fails between time t 
and t + dt, given that it’s working at time t? 

“Bathtub curve” describes many common 
component conditional failure rates 
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From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004 

Human mortality rates (USA, 1999) 
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•  Key idea: Separate the state that may be abandoned in 
case of failure from state that must be preserved 

•  The latter is called durable storage 
– Therefore once the action is performed, the result or 

value of the action persists for some amount of time 
(durable action) 

•  Primary challenge: Building a software system that 
protects the integrity of durable storage despite failures 
– Approach: Build a firewall against failure using the GET/

PUT interface of non-volatile storage devices 

13 

Applying redundancy to software 



•  The interface that the hard disk hardware exposes to the 
disk electronics/microcode above: 
– RAW_SEEK(track) moves disk head into position 
– RAW_PUT(data) writes entire track 
– RAW_GET(data) reads entire track 

•  Untolerated errors: Dust/ RF noise (soft error), defective 
sector (hard error), seek error, power failure (causes partial 
track write) 
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Raw disk storage 



•  The interface that the disk electronics/microcode 
exposes to the disk firmware above: 
–  status ß FAIL_FAST_SEEK(track) 
–  status ß FAIL_FAST_PUT(data, sector_number) 
–  status ß FAIL_FAST_GET(data, sector_number) 

•  Error detection code checks data integrity, in situ sector 
and track numbers check seek operation integrity 

•  Detected errors: Hard/soft/seek errors, power fails during 
PUT causing partial sector write 

•  Untolerated errors: OS crash during FAIL_FAST_PUT 
scribbles on data buffer 
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Fail-fast disk storage 



•  The interface that the disk firmware exposes to the operating 
system above: 
–  status ß CAREFUL_SEEK(track) 
–  status ß CAREFUL_PUT(data, sector_number) 
–  status ß CAREFUL_GET(data, sector_number) 

•  Checks status of FAIL_FAST_*, retries if necessary 

•  Masked errors: Soft errors, seek errors 

•  Detected errors: Hard errors (can then find someplace else), 
power failures during CAREFUL_PUT 

•  Untolerated error: OS crash during CAREFUL_PUT scribbles 
on data buffer 
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Careful disk storage 



•  Techniques for coping with failures 

1.  Failures, reliability, and durability 

2.  Atomicity 

3.  Case study: System R DBMS recovery manager 
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Today 



•  Beneficial in many different contexts 
–  “Purchase” Internet shopping button and power cut 
– You and someone else click “purchase” and one in stock 

•  Atomic action:  There is no way for a higher layer to 
discover the internal structure of the action 
– All-or-nothing atomic:  If the action does not complete 

fully, it leaves no effects 
– Before-or-after atomic: The action behaves as if it 

occurred completely before or completely after any other 
before-or-after atomic action 

•  An action can be atomic but not durable 
•  An action can be durable but not atomic 

Atomicity 
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•  Atomicity and durability via transactions 

•  Standard “crash failure” model: 

– Machines are prone to crashes: Disk contents OK 
(nonvolatile),  Memory contents lost (volatile), but 
machines don’t misbehave (“Byzantine”)   

– Networks are flaky 
• Drop messages, but handled by retransmissions 
• Corruption detected by checksums 

Logging and crash recovery 
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•  Transaction durability:  Once a transaction has committed, 
effects must be permanent for some amount of time 
– Storing database in memory violates this, as crash will 

lead to loss of durability 

•  Failure atomicity:  Even when system crashes 
– Must recover so that uncommitted transactions are 

either aborted or committed 

•  General scheme: Store enough info on disk to determine 
global state 

General approach 
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•  High transaction speed requirements 
–  If always force writes to disk for each result on 

transaction, yields terrible performance 

•  Atomic and durable writes to disk are difficult 
–  In manner to handle arbitrary crashes   
– HDDs/SSDs use write buffers on volatile memory  
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Challenges 



•  Shadow pages 
– Copy-on-write: Keep updated copies of all modified 

entries on disk, but retain old pages.   
– Abort by reverting back to shadow page 

•  Write-Ahead Logging (WAL) 
– Log records every operation performed. 
– Update is reliable when log entry carefully-put on disk   
– Keep updated versions of (disk) pages in memory 
– To recover, replay log entries to reconstruct correct state 

•  WAL is more common, as fewer disk operations 
– Transaction committed once logfile entry stored on disk 
– Only need to fsync log when encounter COMMIT 
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Techniques to overcome challenges 



1.  Database-style 
– Multiple data items (rows, keys) 

2.  Shared memory in multiprocessor 
– Single register access / key 

•  More on this later when we talk about consistency models 

•  Today: Database-style 
– Atomicity particularly relevant with multiple keys 

Two storage models 
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•  Techniques for coping with failures 

1.  Failures, reliability, and durability 

2.  Atomicity 

3.  Case study: System R DBMS recovery manager 
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Today 



•  The Research Data System 
(RDS)  
–  Provides you a relational 

programming model 
–  Compiles SQL statements 

into RSS actions 

•  The Research Storage 
System (RSS) 
–  Provides the RDS record-

based access 
–  Issues I/O operations to 

service RSS actions 
–  Provides “transactional” 

semantics… 
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System R: How do you use it? 

COBOL program, embedded SQL 
(today: Python, C++, et c.) 

Sequences of RSS actions 

RDS layer 

RSS layer 

Operating system I/O 



•  RSS transactions: sequence of RSS actions framed with 
BEGIN TRANSACTION, COMMIT TRANSACTION RSS 
actions 

•  RSS transactions are all-or-nothing atomic: either do all 
the RSS actions in a transaction, or none at all 

 
•  Before-or-after atomicity: two transactions relating to 

same object appear to execute in a serial order 
– Programmer must acquire locks to provide this 

•  RSS actions themselves are all-or-nothing, before-or-after 
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RSS “transactions” 



1.  Performance 
–  System R leverages disk buffering and “lazy write” 

strategies for speed that interact with recoverability 

2.  Several simultaneous goals 
–  Archiving storage: Keep old values around 
–  Durability: Always remember committed transactions 

3.  Change of goals 
–  First the system designers focused on surviving 

crashes (so invented shadow pages) 
–  Then, realized they wanted consistent updates to multiple 

objects (so added log for recoverable transactions) 
27 

Why is the RSS so complex? 



•  Many interacting features: 

–  Least-recently-used 
(LRU) disk buffer pool 

– Shadowed files 

–  Log of old/new record 
values 

– System checkpointing 
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Why is the RSS so complex? (2) 

System R 

Buffer 
pool Log 

File system 

Shadow files 



1.  Transaction abort 
–  Several per minute: users cancel or make input errors 
–  Recovery time goal: milliseconds 

2.  System crash and restart 
–  Several per month: H/W or OS failure, or if System R 

detects a data structure inconsistency 
–  Recovery time goal: seconds 

3.  Media failure 
–  Several per year: disk head crash, S/W failure 
–  Recovery time goal: hours 
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Failure model; availability requirement  



•  Buffer pool is managed with 
a  least-recently-used 
(LRU) policy 

•  File A is non-shadowed: 
System R updates its 
pages in the buffer pool 

•  File B is shadowed: 
– When first opened, 

current and shadow 
entries point to the same 
page table 
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is volatile and presumed not  to survive sys- 
tem restart .  

Each file carries a part icular  recovery 
protocol  and corresponding overhead of re- 
covery. Files are dichotomized as shadowed 
and nonshadowed. Nonshadowed files 
have no automat ic  recovery. T h e  user is 
responsible for making and storing redun- 
dant  copies of these files. Sys tem R simply 
updates  nonshadowed file pages in the 
buffer pool. Changes to nonshadowed files 
are recorded on disk when the pages are 
removed from the buffer pool (by the LRU 
algorithm) and when the file is saved or 
closed. 

By  contrast,  the  RSS  maintains two on- 
line versions of shadowed files, a shadow 
version and a current version. RSS actions 
affect only the current  version of a file and 
never  al ter  the shadow version {except for 
file save and restore commands).  The  cur- 
rent  version of a file can be SAVEd as the 
shadow version, thereby  making the recent  
updates  to the file permanent ;  the current  
version can also be R E S T O R E d  to the 
shadow version, thereby  "undoing" all re- 
cent  updates  to the file (see Figure 7). I f  
data  are spread across several files, it is 
desirable to save or restore all the  files "a t  

once." Therefore  file save or restore can 
apply to sets of shadowed files. 

Although the current  version of a file 
does not  survive restart ,  because recent  up- 
dates to the file may  still reside in the buffer 
pool, the shadow version of a file does. 
Hence  at  RSS restar t  {i.e., after  a crash or 
shutdown) all nonshadowed files have their  
values as of the  system crash {modulo up- 
dates to central  memory  which were not  
wri t ten to disk) and all shadowed files are 
reset  to their  shadow versions. As discussed 
below, starting from this shadow state, the 
log is used to remove the effects of abor ted 
transact ions and to restore the effects of 
commit ted  transactions. 

T h e  current  and shadow versions of a file 
are implemented  in a part icularly efficient 
manner.  When  a shadow page is upda ted  in 
the buffer pool for the first time, a new disk 
page frame is assigned to it. Thereaf ter ,  
when tha t  page is wri t ten from the buffer 
pool or read into the buffer pool, the new 
frame is used (the shadow is never  up- 
dated). Saving a file consists of writing to 
disk all al tered pages of the file current ly  in 
the buffer pool and then  writing to disk the 
new page table, and freeing superseded 
shadow pages. Restoring a file is achieved 

Computing Surveys, Vol. 13, No. 2, June 1981 
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Files and the buffer pool 

CURRENT &



•  When the first File B write 
occurs: 
– Allocate another page table 
– Point current file pointer 

to the new page table 
– Write data to new page 
– Point to new page in the 

current page table 

– This is also called copy-
on-write (COW) 
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apply to sets of shadowed files. 

Although the current  version of a file 
does not  survive restart ,  because recent  up- 
dates to the file may  still reside in the buffer 
pool, the shadow version of a file does. 
Hence  at  RSS restar t  {i.e., after  a crash or 
shutdown) all nonshadowed files have their  
values as of the  system crash {modulo up- 
dates to central  memory  which were not  
wri t ten to disk) and all shadowed files are 
reset  to their  shadow versions. As discussed 
below, starting from this shadow state, the 
log is used to remove the effects of abor ted 
transact ions and to restore the effects of 
commit ted  transactions. 

T h e  current  and shadow versions of a file 
are implemented  in a part icularly efficient 
manner.  When  a shadow page is upda ted  in 
the buffer pool for the first time, a new disk 
page frame is assigned to it. Thereaf ter ,  
when tha t  page is wri t ten from the buffer 
pool or read into the buffer pool, the new 
frame is used (the shadow is never  up- 
dated). Saving a file consists of writing to 
disk all al tered pages of the file current ly  in 
the buffer pool and then  writing to disk the 
new page table, and freeing superseded 
shadow pages. Restoring a file is achieved 
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Files and the buffer pool 



•  On FILE SAVE(B): 

1.  Force pages to disk 

2.  Force current PT to disk 

3.  Set shadow page table ß 
current page table 

4.  Force directory to disk 

5.  Release orphaned (shadow) 
pages and old (shadow) 
page table 
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new page table, and freeing superseded 
shadow pages. Restoring a file is achieved 

Computing Surveys, Vol. 13, No. 2, June 1981 

32 

FILE SAVE 

SHADOW &



•  Suppose we make changes to a file without FILE SAVE, 
then crash.  Do we still have our changes? 
– No!  They might not have been flushed 

•  What if two transactions T1 and T2 are writing data to 
different parts of the same file: do T1 and T2 commit on 
FILE SAVE? 
– No!  FILE SAVE does not pertain to transaction, it’s 

only used for checkpoints and crash recovery 

•  How do we implement FILE RESTORE? 
– Set current page table ß shadow page table 
– Release orphaned pages 
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Properties of shadow files 



•  Provides all-or-nothing atomicity for RSS xactns 

•  Consists of a chained list of records: 
–  (transaction id, record id, old value, new value) 

•  Written according to the write-ahead log (WAL) protocol: 
force the log to disk before FILE SAVE

•  To force the log to disk: First force all transaction’s log records to 
disk, then force commit record last 
– Commit point is the instant commit record on disk 
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The log 



•  Suppose a transaction is in trouble (e.g.: a transaction to 
book flight and hotel room finds a flight but no hotel room) 
– How does System R UNDO the transaction? 

•  Go to log, follow chain of events for this transaction 
backward, undo each RSS action 
– Stop when you reach BEGIN TRANSACTION record 
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Transaction UNDO 



1.  Hypothetical: Suppose no one ever calls FILE SAVE 
– On crash, all writes lost!  But the log contains it all 

2.  Hypothetical: Suppose System R called FILE SAVE only 
when quiet 

–  On crash, only need to REDO xactns after FILE SAVE 
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Thinking about FILE SAVE



1.  Hypothetical: Suppose no one ever calls FILE SAVE 
2.  Hypothetical: Suppose System R called FILE SAVE only 

when quiet 

3.  Hypothetical: Suppose System R called FILE SAVE just 
before anyone commits any transaction 

–  On crash, only need to UNDO logged writes of T2 xactns 
that were pending at the time of the last logged commit 
T1 

37 

Thinking about FILE SAVE

Crash T1 

T2 
T3 



1.  Hypothetical: Suppose no one ever calls FILE SAVE 
2.  Hypothetical: Suppose System R called FILE SAVE only 

when quiet 
3.  Hypothetical: Suppose System R called FILE SAVE just 

before anyone commits any transaction 
 
4.  System R: The only time anyone ever issues FILE SAVE 

is at a periodic checkpoint 
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Thinking about FILE SAVE



1.  First, write log checkpoint record: 
–  Contains list of all in-progress xactns and pointers to their 

most recent log records 

2.  Force the log to disk 

3.  Then, FILE SAVE every open file 
–  This forces all shadow page maps to disk 

4.  Last, remember new checkpoint record 
–  Use a careful-put (cf. S&K Chp. 8) (why?) 
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System R checkpoint procedure 



stable on disk 
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System R checkpoint, crash, restart 

Crash 
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Checkpoint 
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1.  File manager restores shadowed files to shadow versions 

2.  Scan forward from ckpt; assume active xactns are T4 
–  If encounter BEGIN record, note xactn as T5 
–  If encounter COMMIT record of T4, note xactn as T2 
–  If encounter COMMIT record of T5, note xactn as T3 

3.  Scan backward from ckpt; undoing loser ops 

4.  Scan forward from ckpt; redoing winner ops 
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System R restart procedure The Recovery Manager of the 

state. No transactions need be undone or 
redone, and restart initializes System R and 
opens up the system for general use. 

On the other hand, if work was in prog- 
ress at the checkpoint, or if there are log 
records after the checkpoint record, then 
this is a restart from a crash. Figure 11 
illustrates the five possible states of trans- 
actions at this point: 

• T1 began and ended before the check- 
point. 

• T2 began before the checkpoint and ended 
before the crash. 

• T3 began after the checkpoint and ended 
before the crash. 

• T4 began before the checkpoint but no 
commit record appears in the log. 

• T5 began after the checkpoint and appar- 
ently never ended. 

To honor the commit of T1, T2, and T3 
transactions requires their updates to ap- 
pear in the system state (done). But T4 and 
T5 have not committed and so their up- 
dates must not appear in the state (un- 
done). 

At restart the shadowed files are as they 
were at the most recent checkpoint. Notice 
that none of the updates of T5 are reflected 
in this state, so T5 is already undone. No- 
tice also that all of the updates of T1 are in 
the shadow state, so it need not be redone. 
T2 and T3 must be redone from the check- 
point forward. (The updates of the first half 
of T2 are already reflected in the shadow 
state.) On the other hand, T4 must be un- 
done from the checkpoint backward. (Here 
we are skipping over the following anomaly: 
If, after a checkpoint, T2 backs up to a save 
point prior to the checkpoint, then some 
undo work is required for T2.) 

Restart uses the log as follows. It reads 
the most recent checkpoint record and as- 
sumes that all the transactions active at the 
time of the checkpoint are of type T4 (ac- 
tive at checkpoint, not committed). It then 
reads the log in the forward direction start- 
ing from the checkpoint record. If it en- 
counters a BEGIN record, it notes that this 
is a transaction of type T5. If it encounters 
the COMMIT record of a T4 transaction, it 
reclassifies the transaction as type T2. Sim- 
ilarly, T5 transactions are reclassified as T3 
transactions if a COMMIT record is found 
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T1 I - - I  + < 
T2 I + I < 
T3 + I J < 
T4 I + < 
T5  + [ < 

C H E C K P O I N T  C R A S H  

Figure 11.  Five t ransac t ion  types  wi th  respec t  to the  
mos t  recen t  checkpoin t  and  the  c rash  point.  

for that transaction. When it reaches the 
end of the log, the restart manager knows 
all the T2, T3, T4, and T5 transactions. T4- 
and T5-type transactions are called "losers" 
and T2- and T3-type transactions are called 
"winners." Restart  reads the log backward 
from the checkpoint, undoing all actions of 
losers, and then reads the log forward from 
the checkpoint, redoing all actions of win- 
ners. Once this is done, a new checkpoint is 
written so that the restart work will not be 
lost. 

Restart must be prepared to tolerate fail- 
ures during the restart process. This prob- 
lem is subtle in most systems, but the Sys- 
tem R shadow mechanism makes it fairly 
straightforward. System R restart does not 
update the log or the shadow version of the 
database until restart is complete. Taking 
a system checkpoint signals the end of a 
successful restart. System checkpoint is 
atomic, so there are only two cases to con- 
sider. Any failure prior to completing the 
checkpoint will return the restart process 
to the original shadow state. Any failure 
after the checkpoint is complete will return 
the database to the new (restarted) state. 

2.9 Media Failure 

In the event of a system failure which 
causes a loss of disk storage integrity, it 
must be possible to continue with a mini- 
mum of lost work. Such situations are han- 
dled by periodically making a copy of the 
database state and keeping it in an archive. 
This copy, plus a log of subsequent activity, 
can be used to reconstruct the current state. 
The archive mechanism used by System R 
periodically dumps a transaction-consistent 
copy of the database to magnetic tape. 

It is important that  the archive mecha- 
nism have failure modes independent of the 
failure modes of the on-line storage system. 
Using duplexed disks protects against a disk 
head crash, but does not protect against 

Computing Surveys, VoL 13, No. 2, June 1981 

winners 

losers 



•  How far back do we need to scan the log? 

•  What if System R fails during the restart procedure? 

•  What if a xactn aborts just before the crash? 
–  It has recorded its writes and an ABORT record in the log, but 

its UNDOs are trapped in the buffer cache 
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