
Fault-Tolerance I: Atomicity,
logging, and recovery

COS 518: Advanced Computer Systems
Lecture 3

Kyle Jamieson

•  Building reliable systems from unreliable components

•  Three basic steps:

1.  Error detection: Discovering the presence of an error in a
data value or control signal

2.  Error containment: Limiting error propagation distance

3.  Error masking: Adding redundancy for correct operation
despite the error (possibly correct error)

2

What is fault tolerance?

•  Say one bit in a DRAM fails:

•  …it flips a bit in a memory address the
kernel is writing to. Causes big memory
error elsewhere, or a kernel panic

•  …program is running one of many
distributed file system storage servers

•  …a client can’t read from FS, so it hangs

Why is achieving fault tolerance hard?

Failures
Propagate

3

1.  Do nothing: Silently return the failure

2.  Be fail-fast: Detect the failure and report at interface
–  e.g., Ethernet station jams medium on detecting collision

3.  Be fail-safe: Transform incorrect à acceptable values
– Failed traffic light controller switches to blinking-red

4.  Mask the failure
–  e.g. retry op for transient errors, use error-correcting

code for bit flips, replicate data in multiple places

4

So what to do?

•  You’ve already seen some in this and other classes
–  e.g., retransmissions in TCP and RPC

•  Modularity can isolate failures
– Prevent error in one component from spreading

•  We’ll discuss two families of failure-masking techniques:
– Atomicity, logging, and recovery on one server
– Replication and consistency across multiple servers

Techniques to cope with failures

5

1.  Identify every fault, quantify probability of occurrence

2.  Apply modularity to contain damage from high-risk errors

3.  Design and implement fault tolerance procedures

•  Iterate twice on this procedure:
– Once to account for reduction of faults from fault

tolerance procedures
– A second time to run the system in situ, improve and revise

The fault tolerance design process

6

•  Techniques for coping with failures:

1.  Failures, reliability, and durability

2.  Atomicity

3.  Case study: System R DBMS recovery manager

7

Today

•  A component operates correctly for some time, fails, is
repaired, then the cycle repeats (run-fail-repair cycle)
– So, time to failure and time to repair are quantities of

interest. Averaging over multiple run-fail-repair cycles:
• Mean time to failure (MTTF)
• Mean time to repair (MTTR)

– Availability: MTTF / (MTTF + MTTR) = 1 − Down time
– Mean time between failures: MTBF = MTTF + MTTR

•  e.g.: suppose an OS crashes once per month and takes
ten minutes to reboot
– MTTF = 720 hours = 43,200 min, MTTR = 10 min
– Availability = 43,200 / 43,210 = 0.997 (“two nines”), or two

hours down time / year

Measuring the availability of a
system component

8

•  Carrier airlines (2002 FAA fact book)
–  41 accidents, 6.7M departures
–  99.9993% (five nines) availability

•  911 Phone service (1993 NRIC report)
–  29 minutes per line per year
–  99.994% (four nines) availability

•  Standard phone service (various sources)
–  53+ minutes per line per year
–  99.99+% (> four nines) availability

•  End-to-end Internet Availability
–  95% - 99.6% (one to two nines) availability

Availability in practice

9

1.  Are failures independent?
– Q: If the failure probability of a computer in a rack is p,

what is Pr(computer 2 failing | computer 1 failed)?
– A: Maybe it’s p... but plugged into same rack power strip,

where several racks share same UPS?
•  And servers also share same network switch, which

in turn share same border gateway routers?

2.  Do failures follow a memory-less process?
–  Hard disk label advises “expected operational lifetime”

of five years…

Two cautions

10

•  What’s the probability the component fails between time t
and t + dt, given that it’s working at time t?

“Bathtub curve” describes many common
component conditional failure rates

Expected
operating
lifetime

1 / (reported MTTF)

In
fa

nt

m
or

ta
lit

y

P(
fa

ilu
re

 s
oo

n
|

w
or

ki
ng

 n
ow

)

Time t

11

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004

Human mortality rates (USA, 1999)

12

•  Key idea: Separate the state that may be abandoned in
case of failure from state that must be preserved

•  The latter is called durable storage
– Therefore once the action is performed, the result or

value of the action persists for some amount of time
(durable action)

•  Primary challenge: Building a software system that
protects the integrity of durable storage despite failures
– Approach: Build a firewall against failure using the GET/

PUT interface of non-volatile storage devices

13

Applying redundancy to software

•  The interface that the hard disk hardware exposes to the
disk electronics/microcode above:
– RAW_SEEK(track) moves disk head into position
– RAW_PUT(data) writes entire track
– RAW_GET(data) reads entire track

•  Untolerated errors: Dust/ RF noise (soft error), defective
sector (hard error), seek error, power failure (causes partial
track write)

14

Raw disk storage

•  The interface that the disk electronics/microcode
exposes to the disk firmware above:
–  status ß FAIL_FAST_SEEK(track)
–  status ß FAIL_FAST_PUT(data, sector_number)
–  status ß FAIL_FAST_GET(data, sector_number)

•  Error detection code checks data integrity, in situ sector
and track numbers check seek operation integrity

•  Detected errors: Hard/soft/seek errors, power fails during
PUT causing partial sector write

•  Untolerated errors: OS crash during FAIL_FAST_PUT
scribbles on data buffer

15

Fail-fast disk storage

•  The interface that the disk firmware exposes to the operating
system above:
–  status ß CAREFUL_SEEK(track)
–  status ß CAREFUL_PUT(data, sector_number)
–  status ß CAREFUL_GET(data, sector_number)

•  Checks status of FAIL_FAST_*, retries if necessary

•  Masked errors: Soft errors, seek errors

•  Detected errors: Hard errors (can then find someplace else),
power failures during CAREFUL_PUT

•  Untolerated error: OS crash during CAREFUL_PUT scribbles
on data buffer

16

Careful disk storage

•  Techniques for coping with failures

1.  Failures, reliability, and durability

2.  Atomicity

3.  Case study: System R DBMS recovery manager

17

Today

•  Beneficial in many different contexts
–  “Purchase” Internet shopping button and power cut
– You and someone else click “purchase” and one in stock

•  Atomic action: There is no way for a higher layer to
discover the internal structure of the action
– All-or-nothing atomic: If the action does not complete

fully, it leaves no effects
– Before-or-after atomic: The action behaves as if it

occurred completely before or completely after any other
before-or-after atomic action

•  An action can be atomic but not durable
•  An action can be durable but not atomic

Atomicity

18

•  Atomicity and durability via transactions

•  Standard “crash failure” model:

– Machines are prone to crashes: Disk contents OK
(nonvolatile), Memory contents lost (volatile), but
machines don’t misbehave (“Byzantine”)

– Networks are flaky
• Drop messages, but handled by retransmissions
• Corruption detected by checksums

Logging and crash recovery

19

•  Transaction durability: Once a transaction has committed,
effects must be permanent for some amount of time
– Storing database in memory violates this, as crash will

lead to loss of durability

•  Failure atomicity: Even when system crashes
– Must recover so that uncommitted transactions are

either aborted or committed

•  General scheme: Store enough info on disk to determine
global state

General approach

20

•  High transaction speed requirements
–  If always force writes to disk for each result on

transaction, yields terrible performance

•  Atomic and durable writes to disk are difficult
–  In manner to handle arbitrary crashes
– HDDs/SSDs use write buffers on volatile memory

21

Challenges

•  Shadow pages
– Copy-on-write: Keep updated copies of all modified

entries on disk, but retain old pages.
– Abort by reverting back to shadow page

•  Write-Ahead Logging (WAL)
– Log records every operation performed.
– Update is reliable when log entry carefully-put on disk
– Keep updated versions of (disk) pages in memory
– To recover, replay log entries to reconstruct correct state

•  WAL is more common, as fewer disk operations
– Transaction committed once logfile entry stored on disk
– Only need to fsync log when encounter COMMIT

22

Techniques to overcome challenges

1.  Database-style
– Multiple data items (rows, keys)

2.  Shared memory in multiprocessor
– Single register access / key

•  More on this later when we talk about consistency models

•  Today: Database-style
– Atomicity particularly relevant with multiple keys

Two storage models

23

•  Techniques for coping with failures

1.  Failures, reliability, and durability

2.  Atomicity

3.  Case study: System R DBMS recovery manager

24

Today

•  The Research Data System
(RDS)
–  Provides you a relational

programming model
–  Compiles SQL statements

into RSS actions

•  The Research Storage
System (RSS)
–  Provides the RDS record-

based access
–  Issues I/O operations to

service RSS actions
–  Provides “transactional”

semantics…

25

System R: How do you use it?

COBOL program, embedded SQL
(today: Python, C++, et c.)

Sequences of RSS actions

RDS layer

RSS layer

Operating system I/O

•  RSS transactions: sequence of RSS actions framed with
BEGIN TRANSACTION, COMMIT TRANSACTION RSS
actions

•  RSS transactions are all-or-nothing atomic: either do all
the RSS actions in a transaction, or none at all

•  Before-or-after atomicity: two transactions relating to

same object appear to execute in a serial order
– Programmer must acquire locks to provide this

•  RSS actions themselves are all-or-nothing, before-or-after

26

RSS “transactions”

1.  Performance
–  System R leverages disk buffering and “lazy write”

strategies for speed that interact with recoverability

2.  Several simultaneous goals
–  Archiving storage: Keep old values around
–  Durability: Always remember committed transactions

3.  Change of goals
–  First the system designers focused on surviving

crashes (so invented shadow pages)
–  Then, realized they wanted consistent updates to multiple

objects (so added log for recoverable transactions)
27

Why is the RSS so complex?

•  Many interacting features:

–  Least-recently-used
(LRU) disk buffer pool

– Shadowed files

–  Log of old/new record
values

– System checkpointing

28

Why is the RSS so complex? (2)

System R

Buffer
pool Log

File system

Shadow files

1.  Transaction abort
–  Several per minute: users cancel or make input errors
–  Recovery time goal: milliseconds

2.  System crash and restart
–  Several per month: H/W or OS failure, or if System R

detects a data structure inconsistency
–  Recovery time goal: seconds

3.  Media failure
–  Several per year: disk head crash, S/W failure
–  Recovery time goal: hours

29

Failure model; availability requirement

•  Buffer pool is managed with
a least-recently-used
(LRU) policy

•  File A is non-shadowed:
System R updates its
pages in the buffer pool

•  File B is shadowed:
– When first opened,

current and shadow
entries point to the same
page table

230 • J im Gra~ et al.

D I R E C T O R Y

A

Figure 7. T h e directory s tuc tu re for
nonshadowed and shadowed files. File A
is no t shadowed. File B is shadowed and
has two directory entrms, a cu r ren t ver-
s ion and a shadow version.

B

B

C U R R E N T

S H A D O W

C H A N G E D P A G E S

S H A D O W
A N D

U N C H A N G E D P A G E S

is volatile and presumed not to survive sys-
tem restart .

Each file carries a part icular recovery
protocol and corresponding overhead of re-
covery. Files are dichotomized as shadowed
and nonshadowed. Nonshadowed files
have no automat ic recovery. T h e user is
responsible for making and storing redun-
dant copies of these files. Sys tem R simply
updates nonshadowed file pages in the
buffer pool. Changes to nonshadowed files
are recorded on disk when the pages are
removed from the buffer pool (by the LRU
algorithm) and when the file is saved or
closed.

By contrast, the RSS maintains two on-
line versions of shadowed files, a shadow
version and a current version. RSS actions
affect only the current version of a file and
never al ter the shadow version {except for
file save and restore commands). The cur-
rent version of a file can be SAVEd as the
shadow version, thereby making the recent
updates to the file permanent ; the current
version can also be R E S T O R E d to the
shadow version, thereby "undoing" all re-
cent updates to the file (see Figure 7). I f
data are spread across several files, it is
desirable to save or restore all the files "a t

once." Therefore file save or restore can
apply to sets of shadowed files.

Although the current version of a file
does not survive restart , because recent up-
dates to the file may still reside in the buffer
pool, the shadow version of a file does.
Hence at RSS restar t {i.e., after a crash or
shutdown) all nonshadowed files have their
values as of the system crash {modulo up-
dates to central memory which were not
wri t ten to disk) and all shadowed files are
reset to their shadow versions. As discussed
below, starting from this shadow state, the
log is used to remove the effects of abor ted
transact ions and to restore the effects of
commit ted transactions.

T h e current and shadow versions of a file
are implemented in a part icularly efficient
manner. When a shadow page is upda ted in
the buffer pool for the first time, a new disk
page frame is assigned to it. Thereaf ter ,
when tha t page is wri t ten from the buffer
pool or read into the buffer pool, the new
frame is used (the shadow is never up-
dated). Saving a file consists of writing to
disk all al tered pages of the file current ly in
the buffer pool and then writing to disk the
new page table, and freeing superseded
shadow pages. Restoring a file is achieved

Computing Surveys, Vol. 13, No. 2, June 1981

30

Files and the buffer pool

CURRENT &

•  When the first File B write
occurs:
– Allocate another page table
– Point current file pointer

to the new page table
– Write data to new page
– Point to new page in the

current page table

– This is also called copy-
on-write (COW)

230 • J im Gra~ et al.

D I R E C T O R Y

A

Figure 7. T h e directory s tuc tu re for
nonshadowed and shadowed files. File A
is no t shadowed. File B is shadowed and
has two directory entrms, a cu r ren t ver-
s ion and a shadow version.

B

B

C U R R E N T

S H A D O W

C H A N G E D P A G E S

S H A D O W
A N D

U N C H A N G E D P A G E S

is volatile and presumed not to survive sys-
tem restart .

Each file carries a part icular recovery
protocol and corresponding overhead of re-
covery. Files are dichotomized as shadowed
and nonshadowed. Nonshadowed files
have no automat ic recovery. T h e user is
responsible for making and storing redun-
dant copies of these files. Sys tem R simply
updates nonshadowed file pages in the
buffer pool. Changes to nonshadowed files
are recorded on disk when the pages are
removed from the buffer pool (by the LRU
algorithm) and when the file is saved or
closed.

By contrast, the RSS maintains two on-
line versions of shadowed files, a shadow
version and a current version. RSS actions
affect only the current version of a file and
never al ter the shadow version {except for
file save and restore commands). The cur-
rent version of a file can be SAVEd as the
shadow version, thereby making the recent
updates to the file permanent ; the current
version can also be R E S T O R E d to the
shadow version, thereby "undoing" all re-
cent updates to the file (see Figure 7). I f
data are spread across several files, it is
desirable to save or restore all the files "a t

once." Therefore file save or restore can
apply to sets of shadowed files.

Although the current version of a file
does not survive restart , because recent up-
dates to the file may still reside in the buffer
pool, the shadow version of a file does.
Hence at RSS restar t {i.e., after a crash or
shutdown) all nonshadowed files have their
values as of the system crash {modulo up-
dates to central memory which were not
wri t ten to disk) and all shadowed files are
reset to their shadow versions. As discussed
below, starting from this shadow state, the
log is used to remove the effects of abor ted
transact ions and to restore the effects of
commit ted transactions.

T h e current and shadow versions of a file
are implemented in a part icularly efficient
manner. When a shadow page is upda ted in
the buffer pool for the first time, a new disk
page frame is assigned to it. Thereaf ter ,
when tha t page is wri t ten from the buffer
pool or read into the buffer pool, the new
frame is used (the shadow is never up-
dated). Saving a file consists of writing to
disk all al tered pages of the file current ly in
the buffer pool and then writing to disk the
new page table, and freeing superseded
shadow pages. Restoring a file is achieved

Computing Surveys, Vol. 13, No. 2, June 1981

31

Files and the buffer pool

•  On FILE SAVE(B):

1.  Force pages to disk

2.  Force current PT to disk

3.  Set shadow page table ß
current page table

4.  Force directory to disk

5.  Release orphaned (shadow)
pages and old (shadow)
page table

230 • J im Gra~ et al.

D I R E C T O R Y

A

Figure 7. T h e directory s tuc tu re for
nonshadowed and shadowed files. File A
is no t shadowed. File B is shadowed and
has two directory entrms, a cu r ren t ver-
s ion and a shadow version.

B

B

C U R R E N T

S H A D O W

C H A N G E D P A G E S

S H A D O W
A N D

U N C H A N G E D P A G E S

is volatile and presumed not to survive sys-
tem restart .

Each file carries a part icular recovery
protocol and corresponding overhead of re-
covery. Files are dichotomized as shadowed
and nonshadowed. Nonshadowed files
have no automat ic recovery. T h e user is
responsible for making and storing redun-
dant copies of these files. Sys tem R simply
updates nonshadowed file pages in the
buffer pool. Changes to nonshadowed files
are recorded on disk when the pages are
removed from the buffer pool (by the LRU
algorithm) and when the file is saved or
closed.

By contrast, the RSS maintains two on-
line versions of shadowed files, a shadow
version and a current version. RSS actions
affect only the current version of a file and
never al ter the shadow version {except for
file save and restore commands). The cur-
rent version of a file can be SAVEd as the
shadow version, thereby making the recent
updates to the file permanent ; the current
version can also be R E S T O R E d to the
shadow version, thereby "undoing" all re-
cent updates to the file (see Figure 7). I f
data are spread across several files, it is
desirable to save or restore all the files "a t

once." Therefore file save or restore can
apply to sets of shadowed files.

Although the current version of a file
does not survive restart , because recent up-
dates to the file may still reside in the buffer
pool, the shadow version of a file does.
Hence at RSS restar t {i.e., after a crash or
shutdown) all nonshadowed files have their
values as of the system crash {modulo up-
dates to central memory which were not
wri t ten to disk) and all shadowed files are
reset to their shadow versions. As discussed
below, starting from this shadow state, the
log is used to remove the effects of abor ted
transact ions and to restore the effects of
commit ted transactions.

T h e current and shadow versions of a file
are implemented in a part icularly efficient
manner. When a shadow page is upda ted in
the buffer pool for the first time, a new disk
page frame is assigned to it. Thereaf ter ,
when tha t page is wri t ten from the buffer
pool or read into the buffer pool, the new
frame is used (the shadow is never up-
dated). Saving a file consists of writing to
disk all al tered pages of the file current ly in
the buffer pool and then writing to disk the
new page table, and freeing superseded
shadow pages. Restoring a file is achieved

Computing Surveys, Vol. 13, No. 2, June 1981

32

FILE SAVE

SHADOW &

•  Suppose we make changes to a file without FILE SAVE,
then crash. Do we still have our changes?
– No! They might not have been flushed

•  What if two transactions T1 and T2 are writing data to
different parts of the same file: do T1 and T2 commit on
FILE SAVE?
– No! FILE SAVE does not pertain to transaction, it’s

only used for checkpoints and crash recovery

•  How do we implement FILE RESTORE?
– Set current page table ß shadow page table
– Release orphaned pages

33

Properties of shadow files

•  Provides all-or-nothing atomicity for RSS xactns

•  Consists of a chained list of records:
–  (transaction id, record id, old value, new value)

•  Written according to the write-ahead log (WAL) protocol:
force the log to disk before FILE SAVE

•  To force the log to disk: First force all transaction’s log records to
disk, then force commit record last
– Commit point is the instant commit record on disk

34

The log

•  Suppose a transaction is in trouble (e.g.: a transaction to
book flight and hotel room finds a flight but no hotel room)
– How does System R UNDO the transaction?

•  Go to log, follow chain of events for this transaction
backward, undo each RSS action
– Stop when you reach BEGIN TRANSACTION record

35

Transaction UNDO

1.  Hypothetical: Suppose no one ever calls FILE SAVE
– On crash, all writes lost! But the log contains it all

2.  Hypothetical: Suppose System R called FILE SAVE only
when quiet

–  On crash, only need to REDO xactns after FILE SAVE

36

Thinking about FILE SAVE

1.  Hypothetical: Suppose no one ever calls FILE SAVE
2.  Hypothetical: Suppose System R called FILE SAVE only

when quiet

3.  Hypothetical: Suppose System R called FILE SAVE just
before anyone commits any transaction

–  On crash, only need to UNDO logged writes of T2 xactns
that were pending at the time of the last logged commit
T1

37

Thinking about FILE SAVE

Crash T1

T2
T3

1.  Hypothetical: Suppose no one ever calls FILE SAVE
2.  Hypothetical: Suppose System R called FILE SAVE only

when quiet
3.  Hypothetical: Suppose System R called FILE SAVE just

before anyone commits any transaction

4.  System R: The only time anyone ever issues FILE SAVE

is at a periodic checkpoint

38

Thinking about FILE SAVE

1.  First, write log checkpoint record:
–  Contains list of all in-progress xactns and pointers to their

most recent log records

2.  Force the log to disk

3.  Then, FILE SAVE every open file
–  This forces all shadow page maps to disk

4.  Last, remember new checkpoint record
–  Use a careful-put (cf. S&K Chp. 8) (why?)

39

System R checkpoint procedure

stable on disk

40

System R checkpoint, crash, restart

Crash

T1: winner

T3: winner
T2: winner

Checkpoint

T4: loser

T5: loser

Log:

T1
: b

eg

T1
: A

T2

: b
eg

T1

: c
m

t
T2

: B

Ck
pt

:
T2

, T
4

T2
: D

T3

: b
eg

A

B B

A

B C

shadow == current

shadow ≠ current

B D
B F

B C

unknown

B F

T2
: c

m
t

T3
: F

T3
 : c

m
t

T4
: F

T5
: b

eg

T5
: C

1.  File manager restores shadowed files to shadow versions

2.  Scan forward from ckpt; assume active xactns are T4
–  If encounter BEGIN record, note xactn as T5
–  If encounter COMMIT record of T4, note xactn as T2
–  If encounter COMMIT record of T5, note xactn as T3

3.  Scan backward from ckpt; undoing loser ops

4.  Scan forward from ckpt; redoing winner ops

41

System R restart procedure The Recovery Manager of the

state. No transactions need be undone or
redone, and restart initializes System R and
opens up the system for general use.

On the other hand, if work was in prog-
ress at the checkpoint, or if there are log
records after the checkpoint record, then
this is a restart from a crash. Figure 11
illustrates the five possible states of trans-
actions at this point:

• T1 began and ended before the check-
point.

• T2 began before the checkpoint and ended
before the crash.

• T3 began after the checkpoint and ended
before the crash.

• T4 began before the checkpoint but no
commit record appears in the log.

• T5 began after the checkpoint and appar-
ently never ended.

To honor the commit of T1, T2, and T3
transactions requires their updates to ap-
pear in the system state (done). But T4 and
T5 have not committed and so their up-
dates must not appear in the state (un-
done).

At restart the shadowed files are as they
were at the most recent checkpoint. Notice
that none of the updates of T5 are reflected
in this state, so T5 is already undone. No-
tice also that all of the updates of T1 are in
the shadow state, so it need not be redone.
T2 and T3 must be redone from the check-
point forward. (The updates of the first half
of T2 are already reflected in the shadow
state.) On the other hand, T4 must be un-
done from the checkpoint backward. (Here
we are skipping over the following anomaly:
If, after a checkpoint, T2 backs up to a save
point prior to the checkpoint, then some
undo work is required for T2.)

Restart uses the log as follows. It reads
the most recent checkpoint record and as-
sumes that all the transactions active at the
time of the checkpoint are of type T4 (ac-
tive at checkpoint, not committed). It then
reads the log in the forward direction start-
ing from the checkpoint record. If it en-
counters a BEGIN record, it notes that this
is a transaction of type T5. If it encounters
the COMMIT record of a T4 transaction, it
reclassifies the transaction as type T2. Sim-
ilarly, T5 transactions are reclassified as T3
transactions if a COMMIT record is found

System R Database Manager • 235

T1 I - - I + <
T2 I + I <
T3 + I J <
T4 I + <
T5 + [<

C H E C K P O I N T C R A S H

Figure 11. Five t ransac t ion types wi th respec t to the
mos t recen t checkpoin t and the c rash point.

for that transaction. When it reaches the
end of the log, the restart manager knows
all the T2, T3, T4, and T5 transactions. T4-
and T5-type transactions are called "losers"
and T2- and T3-type transactions are called
"winners." Restart reads the log backward
from the checkpoint, undoing all actions of
losers, and then reads the log forward from
the checkpoint, redoing all actions of win-
ners. Once this is done, a new checkpoint is
written so that the restart work will not be
lost.

Restart must be prepared to tolerate fail-
ures during the restart process. This prob-
lem is subtle in most systems, but the Sys-
tem R shadow mechanism makes it fairly
straightforward. System R restart does not
update the log or the shadow version of the
database until restart is complete. Taking
a system checkpoint signals the end of a
successful restart. System checkpoint is
atomic, so there are only two cases to con-
sider. Any failure prior to completing the
checkpoint will return the restart process
to the original shadow state. Any failure
after the checkpoint is complete will return
the database to the new (restarted) state.

2.9 Media Failure

In the event of a system failure which
causes a loss of disk storage integrity, it
must be possible to continue with a mini-
mum of lost work. Such situations are han-
dled by periodically making a copy of the
database state and keeping it in an archive.
This copy, plus a log of subsequent activity,
can be used to reconstruct the current state.
The archive mechanism used by System R
periodically dumps a transaction-consistent
copy of the database to magnetic tape.

It is important that the archive mecha-
nism have failure modes independent of the
failure modes of the on-line storage system.
Using duplexed disks protects against a disk
head crash, but does not protect against

Computing Surveys, VoL 13, No. 2, June 1981

winners

losers

•  How far back do we need to scan the log?

•  What if System R fails during the restart procedure?

•  What if a xactn aborts just before the crash?
–  It has recorded its writes and an ABORT record in the log, but

its UNDOs are trapped in the buffer cache

42

System R restart: Q&A

