
Systems and Networks Architecture:
Naming, Layering, and Communication

COS 518 Advanced Computer Systems
Lecture 2

Kyle Jamieson

[Credits: Selected content from Brad Karp, Scott Shenker]

•  We’ll cover three topics:

1.  Naming and the Domain Name System

2.  Layering and the End-to-End Argument

3.  Administrivia: Reviews and presentations

2

Today

DNS hostname versus IP address
•  DNS host name (e.g. cos518.cs.princeton.edu)

– Mnemonic name appreciated by humans
– Variable length, full alphabet of characters
– Provide little (if any) information about location

•  IP address
– Numerical address appreciated by routers
– Fixed length, binary number
– Hierarchical, related to host location

3

Original design of the DNS
•  Per-host file named /etc/hosts

– Flat namespace: each line is an IP address and a name
– SRI (Menlo Park, California) kept the master copy
– Everyone else downloads regularly

•  But, a single server doesn’t scale

– Traffic implosion (lookups and updates)
– Single point of failure

•  Need a distributed, hierarchical collection of servers

•  Basically, the biggest wide-area distributed database in
the world.

•  Goals:
– Scalability; decentralized maintenance
– Robustness; global scope (names mean the same

thing everywhere)
– Distributed updates/queries
– Good performance

•  But don’t need strong consistency properties

5

DNS: Goals and non-goals

Domain Name System (DNS)
•  Hierarchical name space divided into contiguous

sections called zones

•  Zones are distributed over a collection of DNS servers

•  Hierarchy of DNS servers:
– Root servers (identity hardwired into other servers)
– Top-level domain (TLD) servers
– Authoritative DNS servers

•  Performing the translations:
– Local DNS servers located near clients
– Resolver software running on clients

The DNS namespace is hierarchical

•  Hierarchy of namespace follows hierarchy of servers
– Zone: contiguous tree/subtree in the namespace

•  Set of nameservers answers queries for names within zone

•  Nameservers store names and links to other servers in tree

.

com. gov. edu.

princeton.edu. mit.edu. fcc.gov.

cs.princeton.edu.

Root

Top-level
Domains

(TLDs):

•  Hostname to IP address translation
–  IP address to hostname translation (reverse lookup)

•  Host name aliasing allows other names for a host
– Alias host names point to canonical hostname

•  Email: Lookup a zone’s mail server based on zone name

•  Content distribution networks
–  Load-balance between servers in different locations

– Complex, hierarchical arrangements possible

Many uses of DNS

DNS root nameservers
•  13 root servers. Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium,
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

[Slide credit: Scott Shenker]

DNS root nameservers
•  13 root servers. Does this scale?
•  Each server is really a cluster of servers (some

geographically distributed), replicated via IP anycast

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 37 other locations)

I Autonomica, Stockholm
(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

[Slide credit: Scott Shenker]

TLD and Authoritative Servers
•  Top-level domain (TLD) servers

– Responsible for com, org, net, edu, etc, and all top-
level country domains: uk, fr, ca, jp

– Network Solutions maintains servers for com TLD
– Educause for edu TLD

•  Authoritative DNS servers
– An organization’s DNS servers, providing

authoritative information for organization’s servers
– Can be maintained by organization or ISP

Local name servers
•  Do not strictly belong to hierarchy

•  Each ISP (or company, or university) has one
– Also called default or caching name server

•  When host makes DNS query, query is sent to its local
DNS server
– Acts as proxy, forwards query into hierarchy
– Does work for the client

DNS in operation
•  Most queries and responses are UDP datagrams

•  Two types of queries:

•  Recursive

•  Iterative

www.scholarly.edu?

Answer: www.scholarly.edu A 10.0.0.1

www.scholarly.edu?

Referral: .edu NS 10.2.3.1

Client NS

NS Client

A recursive DNS lookup

 Local nameserver
. (root): NS 198.41.0.4

. (root) authority 198.41.0.4
edu.: NS 192.5.6.30
no.: NS 158.38.8.133
uk.: NS 156.154.100.3

Contact 192.5.6.30 for edu.

www.scholarly.edu? edu. authority 192.5.6.30
scholarly.edu.: NS 12.35.1.1
pedantic.edu.: NS 19.31.1.1

www.scholarly.edu? Contact 12.35.1.1 for scholarly.edu.

scholarly.edu. authority 12.35.1.1
www.scholarly.edu.: A 12.35.2.30
imap.scholarly.edu.: A 12.35.2.31

edu.: NS 192.5.6.30
scholarly.edu.: NS 12.35.1.1

www.scholarly.edu?

www.scholarly.edu.: A 12.35.51.30

Client

Recursive query

•  Less burden on client**

•  More burden on
nameserver (has to return
an answer to the query)

•  Most root and TLD servers
will not answer (shed load)
–  Local name server

answers recursive query

Iterative query

•  More burden on client

•  Less burden on
nameserver (simply
refers the query to
another server)

Recursive versus iterative queries

** The entity performing the query

•  Type = CNAME
–  name is an alias for some

“canonical” (real) name
–  value is canonical name

•  Type = MX (mail exchange)
–  value is name of mail server

associated with domain name
–  pref field discriminates

between multiple MX records

•  Type = A (address)
–  name is hostname
–  value is IP address

•  Type = NS (name server)
–  name is domain (e.g.

cs.ucl.ac.uk)
–  value is hostname of

authoritative name server for
this domain

DNS resource record (RR): Overview
DNS is a distributed database storing resource records
RR includes: (name, type, value, time-to-live)

Example: DNS query “in situ” (1/3)
$ dig @a.root-servers.net www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @a.root-servers.net

www.freebsd.org +norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57494
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6,

ADDITIONAL: 12
;; QUESTION SECTION:
;www.freebsd.org. IN A
;; AUTHORITY SECTION:
org. 172800IN NS b0.org.afilias-nst.org.
org. 172800IN NS d0.org.afilias-nst.org.
;; ADDITIONAL SECTION:
b0.org.afilias-nst.org. 172800IN A 199.19.54.1
d0.org.afilias-nst.org. 172800IN A 199.19.57.1
;; Query time: 177 msec
;; SERVER: 198.41.0.4#53(198.41.0.4)
;; WHEN: Wed Oct 28 07:32:02 2009
;; MSG SIZE rcvd: 435

“Glue” record

Example: DNS query “in situ” (2/3)
$ dig @199.19.54.1 www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @a0.org.afilias-nst.org

www.freebsd.org +norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:

39912
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3,

ADDITIONAL: 0
;; QUESTION SECTION:
;www.freebsd.org. IN A
;; AUTHORITY SECTION:
freebsd.org. 86400 IN NS ns1.isc-sns.net.
freebsd.org. 86400 IN NS ns2.isc-sns.com.
freebsd.org. 86400 IN NS ns3.isc-sns.info.
;; Query time: 128 msec
;; SERVER: 199.19.56.1#53(199.19.56.1)
;; WHEN: Wed Oct 28 07:38:40 2009
;; MSG SIZE rcvd: 121

•  No glue record provided for ns1.isc-sns.net, so need to go
off and resolve (not shown here), restart the query

Example: DNS query “in situ” (3/3)
$ dig @ns1.isc-sns.net www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @ns1.isc-sns.net www.freebsd.org

+norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17037
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 3,

ADDITIONAL: 5
;; QUESTION SECTION:
;www.freebsd.org. IN A
;; ANSWER SECTION:
www.freebsd.org. 3600 IN A 69.147.83.33
;; AUTHORITY SECTION:
freebsd.org. 3600 IN NS ns2.isc-sns.com.
freebsd.org. 3600 IN NS ns1.isc-sns.net.
freebsd.org. 3600 IN NS ns3.isc-sns.info.
;; ADDITIONAL SECTION:
ns1.isc-sns.net. 3600 IN A 72.52.71.1
ns2.isc-sns.com. 3600 IN A 38.103.2.1
ns3.isc-sns.info. 3600 IN A 63.243.194.1

DNS	
 Caching	

•  Performing	
 all	
 these	
 queries	
 takes	
 3me	

– And	
 all	
 this	
 before	
 actual	
 communica3on	
 takes	
 place	

–  e.g.,	
 one-­‐second	
 latency	
 before	
 star3ng	
 Web	
 download	

•  Caching	
 can	
 greatly	
 reduce	
 overhead	

–  The	
 top-­‐level	
 servers	
 very	
 rarely	
 change	

–  Popular	
 sites	
 (e.g.,	
 www.cnn.com)	
 visited	
 oCen	

–  Local	
 DNS	
 server	
 oCen	
 has	
 the	
 informa3on	
 cached	

•  How	
 DNS	
 caching	
 works	

– DNS	
 servers	
 cache	
 responses	
 to	
 queries	

–  Responses	
 include	
 a	
 1me-­‐to-­‐live	
 (TTL)	
 field	

–  Server	
 deletes	
 cached	
 entry	
 aCer	
 TTL	
 expires	

[Slide credit: Scott Shenker]

A word on DNS security
•  Implications of subverting DNS:

1.  Redirect victim’s web traffic to rogue servers

2.  Redirect victim’s email to rogue email servers (MX
records in DNS)

•  Does Secure Sockets Layer (SSL) provide protection?
– Yes―user will get “wrong certificate” if SSL enabled
– No―SSL not enabled or user ignores warnings
– No―how is SSL trust established? Often, by email!

Security	
 Problem	
 #1:	
 Coffee	
 shop	

•  As	
 you	
 sip	
 your	
 laLe	
 and	
 surf	
 the	
 Web,	
 how	
 does	
 your	
 laptop	

find	
 google.com?

•  Answer:	
 it	
 asks	
 the	
 local	
 DNS	
 nameserver	

– Which	
 is	
 run	
 by	
 the	
 coffee	
 shop	
 or	
 their	
 contractor	

– And	
 can	
 return	
 to	
 you	
 any	
 answer	
 they	
 please	

–  Including	
 a	
 “man	
 in	
 the	
 middle”	
 site	
 that	
 forwards	
 your	
 query	

to	
 Google,	
 gets	
 the	
 reply	
 to	
 forward	
 back	
 to	
 you,	
 yet	
 can	

change	
 anything	
 they	
 wish	
 in	
 either	
 direc3on	

•  How	
 can	
 you	
 know	
 you’re	
 geTng	
 correct	
 data?	

–  Today,	
 you	
 can’t.	
 	
 (Though	
 if	
 site	
 is	
 HTTPS,	
 that	
 helps)	

– One	
 day,	
 hopefully:	
 DNSSEC	
 extensions	
 to	
 DNS	

Security	
 Problem	
 #2:	
 Cache	
 poisoning	

•  Suppose	
 you	
 are	
 evil	
 and	
 you	
 control	
 the	
 name	
 server	
 for	

foobar.com.	
 You	
 receive	
 a	
 request	
 to	
 resolve	

www.foobar.com	
 and	
 reply:	

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 IN NS dns1.foobar.com.
foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:
google.com. 5 IN A 212.44.9.155

A	
 foobar.com	
 machine,	
 not	
 google.com	
 Evidence	
 of	
 the	
 aFack	
 disappears	

5	
 seconds	
 later!	

DNS	
 cache	
 poisoning	
 (cont’d)	

•  Okay,	
 but	
 how	
 do	
 you	
 get	
 the	
 vic3m	
 to	
 look	
 up	

www.foobar.com	
 in	
 the	
 first	
 place?	

•  Perhaps	
 you	
 connect	
 to	
 their	
 mail	
 server	
 and	
 send	

– HELO www.foobar.com
– Which	
 their	
 mail	
 server	
 then	
 looks	
 up	
 to	
 see	
 if	
 it	

corresponds	
 to	
 your	
 source	
 address	
 (an3-­‐spam	
 measure)	

•  Perhaps	
 you	
 send	
 many	
 spam	
 or	
 phishing	
 emails	
 containing	

a	
 link	
 to	
 www.foobar.com

Bailiwick	
 checking	

•  Local	
 resolving	
 nameserver	
 ignores	
 all	
 RRs	
 not	
 in	
 or	
 under	
 the	

same	
 zone	
 as	
 the	
 ques1on	

•  Widely	
 deployed	
 since	
 ca.	
 1997	

•  Other	
 aLacks	
 are	
 possible	
 (e.g.	
 Kaminsky	
 poisoning)	

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 IN NS dns1.foobar.com.
foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:
google.com. 5 IN A 212.44.9.155

•  We’ll cover three topics:

1.  Naming and the Domain Name System

2.  Layering and the End-to-End Argument

3.  Administrivia: Reviews and presentations

26

Today

Coping with application/link heterogeneity

•  Re-implement every application for every new
underlying transmission medium?

•  Change every application on any change to an
underlying transmission medium (and vice-versa)?

•  No! But how does the Internet design avoid this?

Applica1ons	

Transmission	
 	

media	

Skype HTTP SSH FTP

Coaxial cable Fiber optic WiFi

(Review) Computer system modularity
•  Key idea: Partition system into modules and

abstractions

•  Well-defined interfaces give flexibility and isolation
– Hide implementation, thus, it can be freely changed
– Extend functionality of system by adding new

modules

•  e.g., libraries encapsulating set of functionality

•  e.g., a programming language and compiler abstracts
away how a particular CPU and operating system work

Layering: a modular approach
•  Partition protocols on the Internet into layers

– Each layer solely relies on services from layer below
– Each layer solely exports services to layer above

•  Advantages of layering:

1.  Decomposes problem of building a network into
manageable pieces

2.  Results in a more modular design. Additions or
changes are usually isolated to one layer

3.  Layer n hides complexity of layer n−1 to higher layers

Internet solution: Intermediate layers

•  Intermediate layers provide a set of abstractions for
applications and media

•  New applications or media need only implement for
intermediate layer’s interface

Applica1ons	

Transmission	

media	

Skype HTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

•  Service: move bits between two systems connected
by a single physical link

•  Interface: specifies how to send, receive bits
– e.g., require quantities and timing

•  Protocols: coding scheme used to represent bits,
voltage levels, duration of a bit

Physical layer (L1)

Data link layer (L2)
•  Service: enables end hosts to exchange atomic

messages with one another
– Using abstract addresses (i.e., not just direct physical

connections)
– Perhaps over multiple physical links, but using the

same framing (headers/trailers)
– Possibly arbitrates access to common physical media
– Possibly implements reliable transmission, flow control

•  Interface: send messages (frames) to other end hosts;
receive messages addressed to end host

•  Protocols: addressing, routing, Media Access Control
(MAC) (e.g., CSMA/CD: Carrier Sense Multiple Access /
Collision Detection)

Network layer (L3)
•  Service: Deliver packets to destinations on other

networks (inter-network, across multiple L2 networks)
– Works across networking technologies (e.g.,

Ethernet, 802.11, frame relay, ATM …)
– Possibly includes packet scheduling/priority
– Possibly includes buffer management

•  Interface: send packets to specified inter-network
destinations; receive packets destined for end host

•  Protocols: define inter-network addresses (globally
unique); construct routing tables

•  Examples: IP, the Internet Protocol

•  Service: Provides end-to-end communication between
processes on different hosts
– Demultiplexing of communication between hosts
– Possibly reliability in the presence of errors
– Rate adaption (flow-control, congestion control)

•  Interface: send message to specific process at given
destination; local process receives messages sent to it

•  Protocol: Perhaps implement reliability, flow control,
packetization of large messages, framing

•  Examples: Transport Control Protocol (TCP), User
Datagram Protocol (UDP)

Transport layer (L4)

•  Service: Any service provided to the end user

•  Interface: Depends on the application

•  Protocol: Depends on the application

•  Examples: File Transfer Protocol (FTP), Skype,
Simple Mail Transfer Protocol (SMTP), Hypertext
Transport Protocol (HTTP), BitTorrent, many others…

•  What happened to layers 5 & 6?
–  “Session” and “Presentation” layers
– Part of OSI architecture, but not Internet architecture

Application layer (L7)

Who does what?
•  Five “Internet architecture” layers

– Lower three layers are implemented everywhere
– Top two layers are implemented only at end hosts

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

Logical communication

•  Each layer on a host interacts with its peer host’s
corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

Physical communication
•  Communication goes down to physical network
•  Then from network peer to peer
•  Then up to the relevant layer

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

39

Motivation: End-to-End Argument
•  Five layers in the Internet architecture model

•  Five places to solve many of same problems:
–  In-order delivery
– Duplicate-free delivery
– Reliable delivery after corruption, loss
– Encryption
– Authentication

•  In which layer(s) should a particular function be
implemented?

40

Example: Careful file transfer from A to B

•  Goal: Accurately copy file on A’s disk to B’s disk

•  Straw man design:
–  Read file from A’s disk
–  A sends stream of packets containing file data to B

•  L2 retransmission of lost or corrupted packets at each hop
–  B writes file data to disk

•  Does this system meet the design goal?
–  Bit errors on links not a problem

A R1 R2 R3 R4 B

data

LL ACKs

41

Where can errors happen?
•  On A’s or B’s disk
•  In A’s or B’s RAM or CPU
•  In A’s or B’s software
•  In the RAM, CPU, or software of any router that

forwards packet

•  Why might errors be likely?
– Drive for CPU speed and storage density: pushes

hardware to EE limits, engineered to tight tolerances
•  e.g., today’s disks return data that are the output of an

maximum-likelihood estimation!
– Bugs abound!

42

Solution: End-to-End verification
1.  A keeps a checksum with the on-disk data

–  Why not compute checksum at start of transfer?
2.  B computes checksum over received data, sends to A
3.  A compares the two checksums and resends if not equal

•  Can we eliminate hop-by-hop error detection?
– Suppose there’s a router with bad RAM; how to find it?

•  Is a whole-file checksum enough?
– Poor performance: must resend whole file each time one

packet (bit) corrupted!

43

End-to-End principle
•  Only the application at communication endpoints

can completely and correctly implement a function

•  Processing in middle alone cannot provide function
– Processing in middle may, however, be an

important performance optimization

•  Engineering middle hops to provide guaranteed
functionality is often wasteful of effort, inefficient

44

Perils of low-layer implementation
•  Entangles application behavior with network internals

•  Suppose each IP router reliably transmitted to next hop
– Result: Lossless delivery, but variable delay
–  ftp: Okay, move huge file reliably (just end-to-end TCP

works fine, too, though)
– Skype: Terrible, jitter packets when a few corruptions or

drops not a problem anyway

•  Complicates deployment of innovative applications
– Example: Phone network v. the Internet

45

Advantages of low-layer implementation
•  Each application author needn’t recode a shared

function

•  Overlapping error checks (e.g., checksums) at all
layers invaluable in debugging and fault diagnosis

•  If end systems not cooperative (increasingly the case),
only way to enforce resource allocation!

46

Challenge: End-to-end authentication + encryption
•  Use a public PC to check your email using IMAP/SSL

–  Authenticates server to you and you to server robustly
–  Encrypts between you robustly for confidentiality

•  Key security consideration: threat model, i.e.
–  Which attacks are you explicitly defending against?
–  Which are you ignoring?
–  What does it cost your adversary to mount an attack?

•  What are you trusting?
–  Mail reader application (could be trojaned)
–  OS (could also be trojaned)
–  Hardware (e.g., "fake ATM" cases)

•  E2E notion of security must consider integrity of software and
hardware at endpoints, possibly even of users!

47

End-to-end violation: Firewalls

•  Box in middle of network that blocks “malicious” traffic
–  End-host software often vulnerable to remote-exploit malware
–  Users are naive, don’t keep systems patched and up-to-date

•  Firewalls clearly violate the e2e principle
–  Endpoints are capable of deciding what traffic to ignore
–  Firewall entangled with design of network and higher protocol

layers and apps, and vice-versa
•  Example: New ECN bit to improve TCP congestion control;

many firewalls filtered all such packets!
•  Yet, we probably do need firewalls

Our network
X

Firewall Internet

48

Summary: End-to-End principle
•  Many functions must be implemented at application endpoints

to provide desired behavior
–  Even if implemented in “middle” of network

•  End-to-end approach decouples design of components in
network interior from design of applications at edges
–  Some functions still benefit from implementation in network

interior at the cost of entangling interior and edges

•  End-to-end principle is not sacred; it’s just a way to think
critically about design choices in communication systems

•  We’ll cover three topics:

1.  Naming and the Domain Name System

2.  Layering and the End-to-End Argument

3.  Administrivia: Reviews and presentations

49

Today

•  Presentation signup on Piazza has already begun
– Signup today if you have not already done so

•  Signup on a Piazza poll to review one of two papers
~48 hours before class (FCFS)
– Don’t signup for paper if > ~15 students (half the

class) signed up

•  At least two hours before class: Submit review and
read others’ reviews

50

Streamlined presentation/review process

•  Read once for perspective, twice for details
– Large systems have many “moving parts” (Lect. 1)
– Analogous to “build one to throw one away”, you

may need to revisit the paper in order to know
which design details to focus on

•  Take notes as you read
– Question assumptions, importance of problem,

important effects not mentioned by authors
– Write questions to track what you don’t understand

How to critically read a paper (1/2)

•  Don’t pass by ideas/design details until you understand
– May need to re-read a paragraph, many times, or

even discuss with peers
– You can’t fully understand if the design is good

unless you understand all the details: be vigilant!

•  Don’t presume authors’ assumptions or design
choices correct simply because paper was published!

52

How to critically read a paper (2/2)

How to evaluate a research paper?
•  Important, relevant problem? Clever idea?

These are orthogonal!

•  Reasonable assumptions and models?

•  Longer ago published, more you can judge impact:
– Does everyone now use systems derived from it?
– Has the idea shown up in many different contexts?

•  Recent papers: more on cleverness, promise

•  Other contributions possible
– Thorough investigation of complex phenomenon
– Comparison that brings sense to an area

•  Slides for a talk 12 to 15 minutes in length

•  Come prepared to lead class discussion after talk

54

Presentation guidelines

Content of a presentation
•  Motivation and problem statement

•  State main contributions of work (core ideas)

•  Description of central design

•  Experimental evaluation

•  Related work

•  Future work

•  “Opinion part”

Also applies to reviews

Description of central design
•  You won’t have time/space to discuss every detail, so

present those that are most important…
– To understanding how and why the system,

design, or algorithm works
– To understanding results in the experimental

evaluation

•  Clarity is very important here
– Usually describe in a “top-down” fashion
– Start with the overall problem
–  Identify parts of the solution, then identifying the

sub-parts of those parts, & c.

•  What questions do the authors ask in their evaluation?

•  What is the authors' hypothesis for each question and why?

•  You won’t have time to present all results, so present most
important results

•  For any graph you show or refer to:
– First, explain the axes
– Explain overall trend: why system behaves as it does
–  Justify explanation by referring to relevant details of

the system's design and experiment's design
– Does anything in the graph seem anomalous? Note

and try to explain

Experimental evaluation

•  What are the most closely related other systems/results?
– How are they similar? How are they different?
–  Is the difference between the work you are presenting

and the related work significant?

•  Should read citations enough to understand differences

•  Should search for related work published after/with the paper

•  No need to claim the work you are presenting is “better”
or “worse” than a particular piece of related work
– Often it is simply that the two pieces of work are different

•  But, should articulate the precise difference (e.g., “this
work solves a slightly different problem…”)

Related and future work

•  Offer your final critical assessment:
– What are the strengths of the work?

– What are the weaknesses/limitations?

– What important questions are left unanswered?

“Opinion part”

Advice on giving a good talk
•  Rehearse your talk many times

– Pay attention to length

•  Help one another present clearly

•  Use examples to explain difficult ideas
– Animations and pictures help tremendously
– There is utility in creating your own

•  Be constructively critical throughout

