Class Introduction
2

Principles of Systems Design

| veET [Nov (M
TES | TAM
il EN | Tvm |

COS 518 Advanced Computer Systems
Lecture 1
Kyle Jamieson

Today

« Welcome to COS-518!

 Course staff and office hours:

Instructor

Kyle Jamieson
COS 305
x8-7477

W 10-11 AM

TA

Logan Stafman
COS 317
850-510-8280
M 10-11 AM

Today
 Welcome to COS-518!

1. Goals and high-level topics
2. Course administrivia

3. Systems design
— “Worse is Better”

— Lampson’s “Hints for Computer System Design”

Goals of this course

* |ntroduction to
— Computer systems principles

— Computer systems research
* Historical and cutting-edge research
* How “systems people” think

 Learn how to
— Read and evaluate papers
— Give talks and evaluate talks
— Build systems and write papers

What is a system?

« System

— Inside v. outside: a system defines an interface with its
environment

— A system achieves specific external behavior
— A system has many components

* This class is about the design of computer systems
 Examples: a PC, a bank ATM, the WWW

« Much of class will operate at the design level
— Relationships of components
— Internals of components that help structure

The central problem: Complexity

« Complexity’s hard to define, but symptoms include:
1. Large number of components

2. Large number of connections

3. lrregular structure

4. No short description

5. Many people required to design or maintain

Organization of the semester

1. Introduction to systems principles

— Concepts in modularity, abstraction, naming, and
communication

« Lampson’s “Worse is Better”

 Saltzer’s end-to-end principles

— Classical computer systems

* Plan9 operating system, the Log-Structured File
System (LFS), the Self-Certifying File System (SFS)

Organization of the semester

1. Introduction to systems principles

2. Distributed systems

— Consistency and performance
« System R, Lamport clocks, Saltzer & Kaashoek
* The Paxos algorithm for distributed consensus

— Systems building on this knowledge
 CRAQ), Spanner

Organization of the semester

1. Introduction to systems principles

2.

3. Mobile and Cloud systems
— Sensor Hints

— MAUI code offload architecture for mobile
— COMET code offload between VMs

— Interactive and real-time applications

* Real-time face recognition
* Gaming

Organization of the semester
2.

3.

4. Scaling storage and data processing
— Weaker consistency models
 Bayou, Dynamo
— MapReduce

— Back to cloud: Geo-distributed data analytics,
latency, and bandwidth

Organization of the semester
3. Mobile and Cloud systems

4. Scaling storage and data processing

5. Concurrency and performance
— Memory and thread management

— Concurrency in web server and general software
design: Flash, SEDA

10

Organization of the semester

4. Scaling storage and data processing
5. Concurrency and performance

6. Security
— Ken Thompson’s Turing Lecture Trusting Trust
— Saltzer’s principles of information protection
— Guest lecture by Philipp Winter (Tor developer)
— Untrusted cloud infrastructure (CryptDB, SPORC)
— Deniable/anonymous communication (Denali)

11

Organization of the semester
5.

0.

7. Project presentations
— Open-ended class project
— Build the software, write it up, present it to the class
— More details later today...

Today
 Welcome to COS-518!

1. Goals and high-level topics
2. Course administrivia

3. Systems design
— “Worse is Better”

— Lampson’s “Hints for Computer System Design”

13

Format of this course

1. Lecture: Introducing a subject
— Older “time-tested” papers, and book readings
— Method of delivery: Read on own, and attend lecture
— Slides will be posted on web just after lecture

2. Paper discussion: Learning about new research
directions, results

— Newer papers from the literature

— Method of delivery: Read and evaluate one of three
papers (using HotCRP review platform)

* One person presents, others add to discussion

Paper discussion: Logistics

= four working days prior: Signup deadline on
Piazza to commit'to one of the day’s papers

— One half of the class signs up for each paper
— First come, first served conflict resolution

« = two working days prior: Review deadline on
HotCRP to write a paper review

* For the class meeting: Read each others’ reviews

* Once per student, per term: Present a paper
— Volunteer to present early, or we assign you later

15

Course text

Required text: Principles of

Computer System Design: An B
Introduction, by J. Saltzer and
M. Kaashoek

— ISBN 978-0-12-374957-4

— Weekly readings from this text s

First 72 available from Labyrinth Books on Nassau St,
and in print and e-reader editions from online retailers

Download the second V= for free from
MIT Open Courseware

Class communication: website

Find it at http://cos518.cs.princeton.edu

» Contains detailed calendar, meeting times and
places, reading assignments and deadlines

— You're responsible to check it daily for reading
assignments (not all on class meeting days)

 Website contains links to Piazza discussion forum
and HotCRP paper review system

17

Class communication: Piazza

 Staff and students discuss, post questions, and
answer guestions on papers and readings

* Receive important announcements from class staff
(also forwarded to you by email)

* Signup today at
http://piazza.com/princeton/fall2015/cos518
— You must subscribe (class policy)
» Most grad students already subscribed

 Your responsibility: check email daily!

18

Using Piazza

* Please post questions on class material on
Piazza, rather than emailing course staff:

— Faster response, whole class benefits from seeing
your question and its answer

« Students encouraged to answer student questions!

— If we think class will benefit from our answer, we
may mark private questions as public (preserving
privacy and academic integrity)

* When discussing something private (e.g., grades),
mark your post as private, so only staff see it!

19

Course project

« Semester-long, open-ended systems research
— Groups of two to three per project

* Project schedule:
— Form groups by Monday, September 28
Group meetings with me in early Oct
— Whitten proposal: (on HotCRP, others review), early Nov
— Presentation and prelim v. 0 demo (Dec 14, 16)

— 5-page paper on v. 1 system (Dean'’s date, 1/12/16)
on github or bitbucket

Project

Two choices:
1. New research

2. Reimplement system in one of papers we read

— Give a little twist on it, or evaluate it in a different
way, try some of the future work, & c.

Must be working code!
— | get to view source in repo

Grading

« 25% class participation

» 25% reading responses (‘reviews")
— Graded on a three-point scale
* 0: Not submitted or content-free
* 1: Submitted and intelligible
 2: Mostly correct
« 3. Correct, salient, and complete

* 50% project:
— 10% checkpoint #1 (proposal)
— 10% checkpoint #2 (presentation + demo)
— 30% final report + code

Today

 Welcome to COS-518!
1. Goals and high-level topics
2. Course administrivia

3. Systems design
— Worse is Better

— Lampson’s “Hints for Computer System Design”

23

Systems challenges common to many fields &

1. Emergent properties (“surprises”)

— Properties not evident in individual components
become clear when combined into a system

— Millennium bridge, London example

b v e 55
orommnm
B i B

! E:- =

B

[PR R

Millennium bridge

« Small lateral movements of the bridge causes
synchronized stepping, which leads to swaying

« Swaying leads to more forceful synchronized
stepping, leading to more swaying

— Positive feedback loop!

* Nicknamed Wobbly Bridge after charity walk on
Save the Children

» Closed for two years soon after opening for
modifications t0 be made (damping)

Systems challenges common to many fields

1. Emergent properties (“surprises”)

2. Propagation of effects
— Small/local disruption - large/systemic effects
— Automobile design example (S & K)

Propagation of effects: Auto design

« Want a better ride so increase tire size
* Need larger trunk for larger spare tire space

* Need to move the back seat forward to
accommodate larger trunk

 Need to make front seats thinner to accommodate
reduced legroom in the back seats

 Worse ride than before

Systems challenges common to many fields

1. Emergent properties (“surprises”)
2. Propagation of effects

3. Incommensurate scaling
— Design for a smaller model may not scale

Galileo in 1638

“To illustrate briefly, | have sketched a bone whose natural length has been
increased three times and whose thickness has been multiplied until, for a
correspondingly large animal, it would perform the same function which the small
bone performs for its small animal. ..

Thus a small dog could probably carry on his back two or three dogs of his own
size; but | believe that a horse could not carry even one of his own size.”

—Dialog Concerning Two New Sciences, 2" Day

Incommensurate scaling

Scaling a mouse into an elephant?

— Volume grows in proportion to O(x3) where x is the
linear measure

— Bone strength grows in proportion to cross sectional
area, O(x?)

— [Haldane, “On being the right size”, 1928]

Real elephant requires different skeletal
arrangement than the mouse

31

Incommensurate scaling:
Scaling routing in the Internet

Just 39 hosts as the ARPA net backin 1973

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

@ @
e 7 wors @ w7 (POPA0
IMP

AMES

STANFORD
(POP-10)— IMP
.

vsc-

FYMSNARE

FNWC
WAWAII AMES @
[Tip IMP <PDP-10
sce

CRL vese

@l @l

UCLA

@ 360/9)
ucso
WICRO
)
e @

[316] 316 —
IMP IMP L—J

RADC

CASE

(POP-10 IMP
[1.44

oocs

USs¢
It

DDP-516 m

P0P-10 W MNARVARD

151
QDP-)O)—-{ e}

RML ETAC
J] TIP[r TIP

32

Incommensurate scaling:
Scaling routing in the Internet

i g’ 5 G/
‘;g‘? '.y "7/ AL 'L_ A

7 & 7 i

+ Total size of routin r rtet aths): O(n?)

* Today’s Internet: Techniques to cope with scale

— Hierarchical routing on network numbers
32 bit address =16 bit network # and 16 bit host #

— Limit # of hosts/network: Network address translation

33

Incommensurate Scaling: Ethernet

 All computers share single cable
* Goal is reliable delivery

* Listen-while-send to avoid collisions

TEANKENE | STRTION

T™We EfpEr 2

Will listen-while-send detect collisions?

* 1 km at 60% speed of light is 5 us
— A can send 15 bits before first bit arrives at B

* Therefore A must keep sending for 2 x 5 ys
— To detect collision if B sends when first bit arrives

* Therefore, minimum packet size is 2 x 5 ys %
3 Mbit/s = 30 bits

1km at 3 Mbit/s
~A3]010101010101011 <

From the experimental Ethernet to the
Ethernet standard

» Experimental Ethernet design: 3 Mbit/s
— Default header is 5 bytes = 40 bits

— No problem with detecting collisions

* First Ethernet standard: 10 Mbit/s

— Must send for 2 x 20 us = 400 bits
* But header is just 112 bits

— Need for a minimum packet size!

» Solution: Pad packets to at least 50 bytes

Systems challenges common to many fields

1. Emergent properties (“surprises”)
2. Propagation of effects
3. Incommensurate scaling

4. Trade-offs
— Many design constraints present as trade-offs

— Improving one aspect of a system diminishes
performance elsewhere

Binary classification trade-off

« Have a proxy signal that imperfectly captures real
signal of interest

Example: Household smoke detector

Real categories

fire no fire
detector TA: fire | FA: false
Proxy signals extinguished alarm

caiegones detector FR: house TR: all
quiet burns down quiet

38

Sources of complexity

1. Cascading and interacting requirements
Telephone system

* Features: Call Forwarding, reverse billing (900

numbers), Call Number Delivery Blocking, Automatic Call
Back, Itemized Billing

— A calls B, B forwards to 900 number, who pays?

« A calls B, B is busy
CADB ACB+IB . Once B done, B calls A

@ « A’s number appears on

B’s bill

Interacting Features

« Each feature has a spec
* An interaction is bad if feature X breaks feature Y

* These bad interactions may be fixable...
— But there are so many interactions to consider:
huge source of complexity.
— Perhaps more than n? interactions, e.g. triples

— Cost of thinking about / fixing interaction gradually grows
to dominate software costs

« Complexity is super-linear

Sources of complexity
1.

2. Maintaining high utilization of a scarce resource

Single-track railroad line running through a
long canyon

* Might use a pullout and signal to allow bidirectional ops
« But now need careful scheduling
 Emergent property: Train length < pullout length

Coping with complexity

1. Modularity
— Divide system into modules, consider each separately

— Well-defined interfaces give flexibility and isolation
 Hide implementation, thus, it can be freely changed

« Example: bug countin alarge, N-line codebase
— Bug count o< N
— Debug time o< N x bug count oc N2

 Now divide the N-line codebase into K modules
— Debug time o< (N/K)°x K = N*/K

Coping with complexity
1. Modularity

2. Abstraction

— The ability of any module to treat other modules like
a “black box”

« Just based on the other module’s interface
 Without regard for the other’s internal implementation

— Symptoms:
* Fewer interactions between modules
* Less propagation of effects between modules

Coping with complexity

1. Modularity

2. Abstraction

— The Robustness Principle: Be tolerant of inputs
and strict on outputs

Robustness principle in action:
The digital abstraction

A

8

5V SV

{ ‘ Valid
1
4 v|Von

. ‘ 1 L
*1 Noise V
margin " JH 35V
Forbidden

Sender region , Receiver
‘II, 2V
0
‘/ .\\)i.\‘_@
“0 15V Ol margin “0
Valid
0
OV oV

45

Coping with complexity
1. Modularity

2.

3. Hierarchy
— Start with small group of modules, assemble
« Assemble those assemblies, & c.
— Reduces connections, constraints interactions

Coping with complexity

1. Modularity
2. Abstraction
3. Hierarchy

4. Layering
— A form of modularity
— Gradually build up a system, layer by layer
— Example: Internet protocol stack

Layering on the Internet: The problem

Applications

Transmission
media

* Re-implement every application for every new
underlying transmission medium?

« Change every application on any change to an
underlying transmission medium (and vice-versa)?

* No! But how does the Internet design avoid this?

Layering on the Internet:
Intermediate layers provide a solution

Applications

Transmission
media

* Intermediate layers provide a set of abstractions
for applications and media

* New applications or media need only implement
for intermediate layer’s interface

Computer systems: The same, but different

1. Often unconstrained by physical laws

Computer systems are mostly digital

Contrast: Analog 1}/stems have physical limitations
(degrading copies of analog music media)

Back to the digital static discipline
Static discipline restores signal levels

Can therefore scale microprocessors to billions of
gates, encounter new, interesting emergent
properties

50

Computer systems: The same, but different

1. Often unconstrained by physical laws

2. Unprecedented d(technology)/dt
— Many examples:
« Magnetic disk storage price per gigabyte
 RAM storage price per gigabyte
* Optical fiber transmission speed

— Result: Incommensurate scaling, with system
redesign consequences

51

Incommensurate scaling on the Internet

Normalized growth since 1981

10’
106 Number of Internet hosts —___janwes=="
105 III.....
10* ,,,.--"""-
1,000 2 | |
100 i Bits/second/$ (approximate)
10 : .
1
1980 1985 1990 1995 2000 2005 2010
vegr Speed of light,

Shannon capacity,
Backhoe rental price

Summary and lessons

Expect surprises in system design

There is no small change in a system
10-100x increase? = perhaps re-design
Complexity is super-linear in system size
Performance cost is super-linear in system size
Reliability cost is super-linear in system size

Technology’s high rate of change induces
iIncommensurate scaling

Today
 Welcome to COS-518!

1. Goals and high-level topics
2.

3. Systems design

— “Worse Is Better”
* Richard P. Gabriel (known for Common Lisp)

J 13

— Lampson’s “Hints for Computer System Design”

54

Setting: The two approaches

MIT approach New Jersey approach

« Simplicity: Must be simple in * Simplicity: Must be simple in

both implementation, and
especially interface

* Correctness: Must be .
absolutely correct in all aspects

« Completeness: Must cover all
reasonably expected cases,

even to detriment of simplicity

both interface and especially
implementation

Correctness: Must be
correct, but slightly better to
be simple

Completeness: Cover as
many cases as is practical

— Can sacrifice for other property,
must sacrifice for simplicity

55

Worse is better!

* In your favorite language, what does the following
compute (suppose xisaninteger). x + 1

— Scheme: Always calculates an integer value one
larger than x

— Most others including C: Something like (x + 1)
mod 2372

« C: simple implementation, complex interface
— This is the key tradeoff that Gabriel describes
— Probably not what the programmer actually wanted

— But, it works in the common case, and most
languages follow the New Jersey approach!

56

Worse is worse!

 Consider fgets(char *s, int n, FILE *f)
versus gets (char *s)

— fgets limits the length of the string stored to the
size specified by n

— gets stores into s however many characters from
stdin are ready for input

* Which is the MIT approach? Which is the New
Jersey approach?

» gets has been implicated in many buffer
overflow security exploits

— For security, “the right thing” is the only thing!

57

Today
 Welcome to COS-518!

1.
2.

3. Systems design

— Lampson’s “Hints for Computer System Design”’
« Butler Lampson (Turing, MSFT Fellow, Alto, 2PC, ...)
« SOSP 1993 conference

Systems versus algorithms

Computer systems differ from algorithms

— External interfaces are less precisely designed,
more complex, more likely to change

— Much more internal structure, interfaces

— Measure of success much less clear

And, principles of computer system design are
much more heuristic, less mathematical

59

Interfaces

* Most of Lampson’s hints depend on notion of interface

— Separates clients of an abstraction from the
implementation of that abstraction

* Defining interfaces is the most important part of
system design

* Interfaces should be:

1. Simple

2. Complete

3. Admit a sufficiently small and fast implementation

60

Keep it simple

* |n other words, follow the New Jersey approach:
* Do one thing at a time, and do it well

» Don’t generalize: generalizations are usually wrong
— Generalization leads to unexpected complexity

* |nterface mustn’t promise more than the
implementation knows how to deliver

61

Continuity

 As a system changes, how do you manage change?
+ Keep basic interfaces stable

* |If you do change interfaces, keep a place to stand

— Compatibility package (a.k.a. shim layer)
implementing old interface atop new interface

62

Implementation

Plan to throw one away (you will anyhow)
— Brooks’ observation in The Mythical Man-Month

— It pays to revisit old design decisions with the benefit
of hindsight

» Keep secrets of the implementation

— Assumptions about the implementation that clients
are not allowed to make

* In other words, things that can change

* |Instead of generalizing, use a good idea again

63

Handling all the cases

« Handle normal and worst cases separately:

— The normal case must be fast;
— The worst case must make some progress

64

A possibly-missing hint:

* Use indirection
— o through an intermediary to an object

 Examples:
— Virtual memory

— Compiler’s intermediate representation (between
high-level and machine languages)

— WEe'll see another example when we discuss
System R (Lecture 3)

65

For next time...

Today: Read S&K assigned reading, “Worse is Better”
and Lampson’s "Hints”

Monday 9/21 paper discussion:

— The Log-Structured File System
— Plan 9 Operating system

» Excellent papers, so an opportunity: Sign up to
present Oangnday by emal?l?ng TA to)(,jay Jn b

— Mandatory: Everyone sign up to review one of
the two papers by the end of the day today

* If no volunteers, we will randomly assign a presenter
tomorrow morning!

66

