
Class Introduction
w

Principles of Systems Design

COS 518 Advanced Computer Systems
Lecture 1

Kyle Jamieson

•  Welcome to COS-518!

•  Course staff and office hours:

1

Today

Instructor
Kyle Jamieson
COS 305
x8-7477
W 10-11 AM

TA
Logan Stafman
COS 317
850-510-8280
M 10-11 AM

•  Welcome to COS-518!

1.  Goals and high-level topics

2.  Course administrivia

3.  Systems design
–  “Worse is Better”
–  Lampson’s “Hints for Computer System Design”

2

Today

•  Introduction to
– Computer systems principles
– Computer systems research

• Historical and cutting-edge research
• How “systems people” think

•  Learn how to
– Read and evaluate papers
– Give talks and evaluate talks
– Build systems and write papers

3

Goals of this course

•  System
–  Inside v. outside: a system defines an interface with its

environment
– A system achieves specific external behavior
– A system has many components

•  This class is about the design of computer systems

•  Examples: a PC, a bank ATM, the WWW

•  Much of class will operate at the design level
– Relationships of components
–  Internals of components that help structure

What is a system?

•  Complexity’s hard to define, but symptoms include:

1.  Large number of components

2.  Large number of connections

3.  Irregular structure

4.  No short description

5.  Many people required to design or maintain

The central problem: Complexity

1.  Introduction to systems principles

– Concepts in modularity, abstraction, naming, and
communication
•  Lampson’s “Worse is Better”
•  Saltzer’s end-to-end principles

– Classical computer systems
•  Plan9 operating system, the Log-Structured File

System (LFS), the Self-Certifying File System (SFS)

6

Organization of the semester

1.  Introduction to systems principles

2.  Distributed systems

– Consistency and performance
•  System R, Lamport clocks, Saltzer & Kaashoek
•  The Paxos algorithm for distributed consensus

– Systems building on this knowledge
• CRAQ, Spanner

7

Organization of the semester

1.  Introduction to systems principles

2.  Distributed systems

3. Mobile and Cloud systems
– Sensor Hints
– MAUI code offload architecture for mobile
– COMET code offload between VMs
–  Interactive and real-time applications

• Real-time face recognition
• Gaming

8

Organization of the semester

2.  Distributed systems

3.  Mobile and Cloud Systems

4.  Scaling storage and data processing
–  Weaker consistency models

•  Bayou, Dynamo
–  MapReduce
–  Back to cloud: Geo-distributed data analytics,

latency, and bandwidth

9

Organization of the semester

3.  Mobile and Cloud systems

4.  Scaling storage and data processing

5.  Concurrency and performance

–  Memory and thread management
–  Concurrency in web server and general software

design: Flash, SEDA

10

Organization of the semester

4.  Scaling storage and data processing

5.  Concurrency and performance

6.  Security
–  Ken Thompson’s Turing Lecture Trusting Trust
–  Saltzer’s principles of information protection
–  Guest lecture by Philipp Winter (Tor developer)
–  Untrusted cloud infrastructure (CryptDB, SPORC)
–  Deniable/anonymous communication (Denali)

11

Organization of the semester

5.  Concurrency and performance

6.  Security

7.  Project presentations
–  Open-ended class project
–  Build the software, write it up, present it to the class
–  More details later today…

12

Organization of the semester

•  Welcome to COS-518!

1.  Goals and high-level topics

2.  Course administrivia

3.  Systems design
–  “Worse is Better”
–  Lampson’s “Hints for Computer System Design”

13

Today

1.  Lecture: Introducing a subject
– Older “time-tested” papers, and book readings
– Method of delivery: Read on own, and attend lecture
– Slides will be posted on web just after lecture

2.  Paper discussion: Learning about new research
directions, results
– Newer papers from the literature
– Method of delivery: Read and evaluate one of three

papers (using HotCRP review platform)
• One person presents, others add to discussion

14

Format of this course

•  ≈ four working days prior: Signup deadline on
Piazza to commit to one of the day’s papers
– One half of the class signs up for each paper
– First come, first served conflict resolution

•  ≈ two working days prior: Review deadline on
HotCRP to write a paper review

•  For the class meeting: Read each others’ reviews

•  Once per student, per term: Present a paper
– Volunteer to present early, or we assign you later

15

Paper discussion: Logistics

•  First ½ available from Labyrinth Books on Nassau St,
and in print and e-reader editions from online retailers

•  Download the second ½ for free from
MIT Open Courseware

16

Course text
•  Required text: Principles of

Computer System Design: An
Introduction, by J. Saltzer and
M. Kaashoek
–  ISBN 978-0-12-374957-4
– Weekly readings from this text

•  Find it at http://cos518.cs.princeton.edu

•  Contains detailed calendar, meeting times and
places, reading assignments and deadlines
– You’re responsible to check it daily for reading

assignments (not all on class meeting days)

•  Website contains links to Piazza discussion forum
and HotCRP paper review system

17

Class communication: website

•  Staff and students discuss, post questions, and
answer questions on papers and readings

•  Receive important announcements from class staff
(also forwarded to you by email)

•  Signup today at
http://piazza.com/princeton/fall2015/cos518
– You must subscribe (class policy)

• Most grad students already subscribed

•  Your responsibility: check email daily!

18

Class communication: Piazza

•  Please post questions on class material on
Piazza, rather than emailing course staff:
– Faster response, whole class benefits from seeing

your question and its answer
•  Students encouraged to answer student questions!

–  If we think class will benefit from our answer, we
may mark private questions as public (preserving
privacy and academic integrity)

•  When discussing something private (e.g., grades),

mark your post as private, so only staff see it!

19

Using Piazza

•  Semester-long, open-ended systems research
– Groups of two to three per project

•  Project schedule:
– Form groups by Monday, September 28
–  Idea pitch: Group meetings with me in early Oct
– Written proposal: (on HotCRP, others review), early Nov
– Presentation and prelim v. 0 demo (Dec 14, 16)
– 5-page paper on v. 1 system (Dean’s date, 1/12/16)

• Working source code on github or bitbucket

20

Course project

Project
•  Two choices:

1.  New research

2.  Reimplement system in one of papers we read
– Give a little twist on it, or evaluate it in a different

way, try some of the future work, & c.

•  Must be working code!
–  I get to view source in repo

21

Grading
•  25% class participation

•  25% reading responses (“reviews”)
– Graded on a three-point scale

•  0: Not submitted or content-free
•  1: Submitted and intelligible
•  2: Mostly correct
•  3: Correct, salient, and complete

•  50% project:
– 10% checkpoint #1 (proposal)
– 10% checkpoint #2 (presentation + demo)
– 30% final report + code

22

•  Welcome to COS-518!

1.  Goals and high-level topics

2.  Course administrivia

3.  Systems design
–  Worse is Better
–  Lampson’s “Hints for Computer System Design”

23

Today

1.  Emergent properties (“surprises”)

– Properties not evident in individual components
become clear when combined into a system

– Millennium bridge, London example

Systems challenges common to many fields

25

•  Small lateral movements of the bridge causes
synchronized stepping, which leads to swaying

•  Swaying leads to more forceful synchronized
stepping, leading to more swaying
– Positive feedback loop!

•  Nicknamed Wobbly Bridge after charity walk on
Save the Children

•  Closed for two years soon after opening for
modifications to be made (damping)

Millennium bridge

1.  Emergent properties (“surprises”)

2.  Propagation of effects
– Small/local disruption à large/systemic effects
– Automobile design example (S & K)

Systems challenges common to many fields

•  Want a better ride so increase tire size

•  Need larger trunk for larger spare tire space

•  Need to move the back seat forward to
accommodate larger trunk

•  Need to make front seats thinner to accommodate
reduced legroom in the back seats

•  Worse ride than before

Propagation of effects: Auto design

1.  Emergent properties (“surprises”)

2.  Propagation of effects

3.  Incommensurate scaling
– Design for a smaller model may not scale

Systems challenges common to many fields

“To illustrate briefly, I have sketched a bone whose natural length has been
increased three times and whose thickness has been multiplied until, for a
correspondingly large animal, it would perform the same function which the small
bone performs for its small animal…

Thus a small dog could probably carry on his back two or three dogs of his own
size; but I believe that a horse could not carry even one of his own size.”

—Dialog Concerning Two New Sciences, 2nd Day

Galileo in 1638

•  Scaling a mouse into an elephant?
– Volume grows in proportion to O(x3) where x is the

linear measure
– Bone strength grows in proportion to cross sectional

area, O(x2)
–  [Haldane, “On being the right size”, 1928]

•  Real elephant requires different skeletal
arrangement than the mouse

31

Incommensurate scaling

•  Just 39 hosts as the ARPA net back in 1973

32

Incommensurate scaling:
Scaling routing in the Internet

•  Total size of routing tables (for shortest paths): O(n2)
•  Today’s Internet: Techniques to cope with scale

– Hierarchical routing on network numbers
•  32 bit address =16 bit network # and 16 bit host #

–  Limit # of hosts/network: Network address translation
33

Incommensurate scaling:
Scaling routing in the Internet

Incommensurate Scaling: Ethernet
•  All computers share single cable

•  Goal is reliable delivery

•  Listen-while-send to avoid collisions

•  1 km at 60% speed of light is 5 µs
– A can send 15 bits before first bit arrives at B

•  Therefore A must keep sending for 2 × 5 µs
– To detect collision if B sends when first bit arrives

•  Therefore, minimum packet size is 2 × 5 µs ×
3 Mbit/s = 30 bits

Will listen-while-send detect collisions?

•  Experimental Ethernet design: 3 Mbit/s
– Default header is 5 bytes = 40 bits
– No problem with detecting collisions

•  First Ethernet standard: 10 Mbit/s
– Must send for 2 × 20 µs = 400 bits

•  But header is just 112 bits
– Need for a minimum packet size!

•  Solution: Pad packets to at least 50 bytes

From the experimental Ethernet to the
Ethernet standard

1.  Emergent properties (“surprises”)

2.  Propagation of effects

3.  Incommensurate scaling

4.  Trade-offs
–  Many design constraints present as trade-offs

–  Improving one aspect of a system diminishes
performance elsewhere

Systems challenges common to many fields

•  Have a proxy signal that imperfectly captures real
signal of interest

•  Example: Household smoke detector

38

Binary classification trade-off

1.  Cascading and interacting requirements
– Example: Telephone system

•  Features: Call Forwarding, reverse billing (900
numbers), Call Number Delivery Blocking, Automatic Call
Back, Itemized Billing

– A calls B, B forwards to 900 number, who pays?

Sources of complexity

A B

CNDB ACB + IB
•  A calls B, B is busy
•  Once B done, B calls A
•  A’s number appears on

B’s bill

•  Each feature has a spec
•  An interaction is bad if feature X breaks feature Y

•  These bad interactions may be fixable…
–  But there are so many interactions to consider:

 huge source of complexity.
–  Perhaps more than n2 interactions, e.g. triples
–  Cost of thinking about / fixing interaction gradually grows

to dominate software costs

•  Complexity is super-linear

Interacting Features

1.  Cascading and interacting requirements

2.  Maintaining high utilization of a scarce resource
–  Example: Single-track railroad line running through a

long canyon
•  Might use a pullout and signal to allow bidirectional ops
•  But now need careful scheduling
•  Emergent property: Train length < pullout length

Sources of complexity

1.  Modularity
– Divide system into modules, consider each separately
– Well-defined interfaces give flexibility and isolation

• Hide implementation, thus, it can be freely changed

•  Example: bug count in a large, N-line codebase
– Bug count ∝ N
– Debug time ∝ N × bug count ∝ N2

•  Now divide the N-line codebase into K modules
– Debug time ∝ (N / K)2 × K = N2/K

Coping with complexity

1.  Modularity

2.  Abstraction

– The ability of any module to treat other modules like
a “black box”
•  Just based on the other module’s interface
• Without regard for the other’s internal implementation

– Symptoms:
•  Fewer interactions between modules
•  Less propagation of effects between modules

Coping with complexity

1.  Modularity

2.  Abstraction

– The Robustness Principle: Be tolerant of inputs
and strict on outputs

Coping with complexity

45

Robustness principle in action:
The digital abstraction

1.  Modularity

2.  Abstraction

3.  Hierarchy
– Start with small group of modules, assemble

•  Assemble those assemblies, & c.
– Reduces connections, constraints interactions

Coping with complexity

1.  Modularity

2.  Abstraction

3.  Hierarchy

4.  Layering
– A form of modularity
– Gradually build up a system, layer by layer
– Example: Internet protocol stack

Coping with complexity

Layering on the Internet: The problem

•  Re-implement every application for every new
underlying transmission medium?

•  Change every application on any change to an
underlying transmission medium (and vice-versa)?

•  No! But how does the Internet design avoid this?

Applica'ons	

Transmission	
 	

media	

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Layering on the Internet:
Intermediate layers provide a solution

•  Intermediate layers provide a set of abstractions
for applications and media

•  New applications or media need only implement
for intermediate layer’s interface

Applica'ons	

Transmission	

media	

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

1.  Often unconstrained by physical laws
–  Computer systems are mostly digital

–  Contrast: Analog systems have physical limitations
(degrading copies of analog music media)

–  Back to the digital static discipline
•  Static discipline restores signal levels
•  Can therefore scale microprocessors to billions of

gates, encounter new, interesting emergent
properties

50

Computer systems: The same, but different

1.  Often unconstrained by physical laws

2.  Unprecedented d(technology)/dt
–  Many examples:

•  Magnetic disk storage price per gigabyte
•  RAM storage price per gigabyte
•  Optical fiber transmission speed

–  Result: Incommensurate scaling, with system
redesign consequences

51

Computer systems: The same, but different

Incommensurate scaling on the Internet
Normalized growth since 1981

Number of Internet hosts

Bits/second/$ (approximate)

Speed of light,
Shannon capacity,
Backhoe rental price

•  Expect surprises in system design
•  There is no small change in a system
•  10-100× increase? ⇒ perhaps re-design
•  Complexity is super-linear in system size
•  Performance cost is super-linear in system size
•  Reliability cost is super-linear in system size
•  Technology’s high rate of change induces

incommensurate scaling

Summary and lessons

•  Welcome to COS-518!

1.  Goals and high-level topics

2.  Course administrivia

3.  Systems design
–  “Worse is Better”

•  Richard P. Gabriel (known for Common Lisp)

–  Lampson’s “Hints for Computer System Design”
54

Today

MIT approach

•  Simplicity: Must be simple in
both implementation, and
especially interface

•  Correctness: Must be
absolutely correct in all aspects

•  Completeness: Must cover all
reasonably expected cases,
even to detriment of simplicity

New Jersey approach

•  Simplicity: Must be simple in
both interface and especially
implementation

•  Correctness: Must be
correct, but slightly better to
be simple

•  Completeness: Cover as
many cases as is practical
–  Can sacrifice for other property,

must sacrifice for simplicity

55

Setting: The two approaches

•  In your favorite language, what does the following
compute (suppose x is an integer): x + 1
– Scheme: Always calculates an integer value one

larger than x
– Most others including C: Something like (x + 1)
mod 232

•  C: simple implementation, complex interface
– This is the key tradeoff that Gabriel describes
– Probably not what the programmer actually wanted
– But, it works in the common case, and most

languages follow the New Jersey approach!

56

Worse is better!

•  Consider fgets(char *s, int n, FILE *f)
versus gets(char *s)
– fgets limits the length of the string stored to the

size specified by n
– gets stores into s however many characters from
stdin are ready for input

•  Which is the MIT approach? Which is the New
Jersey approach?

•  gets has been implicated in many buffer
overflow security exploits
– For security, “the right thing” is the only thing!

57

Worse is worse!

•  Welcome to COS-518!

1.  Goals and high-level topics

2.  Course administrivia

3.  Systems design
–  Worse is Better

•  Richard P. Gabriel (known for Common Lisp)

–  Lampson’s “Hints for Computer System Design”
•  Butler Lampson (Turing, MSFT Fellow, Alto, 2PC, …)
•  SOSP 1993 conference

58

Today

•  Computer systems differ from algorithms
– External interfaces are less precisely designed,

more complex, more likely to change

– Much more internal structure, interfaces

– Measure of success much less clear

•  And, principles of computer system design are
much more heuristic, less mathematical

59

Systems versus algorithms

•  Most of Lampson’s hints depend on notion of interface
– Separates clients of an abstraction from the

implementation of that abstraction

•  Defining interfaces is the most important part of
system design

•  Interfaces should be:
1.  Simple
2.  Complete
3.  Admit a sufficiently small and fast implementation

60

Interfaces

•  In other words, follow the New Jersey approach:

•  Do one thing at a time, and do it well

•  Don’t generalize: generalizations are usually wrong
– Generalization leads to unexpected complexity

•  Interface mustn’t promise more than the

implementation knows how to deliver

61

Keep it simple

•  As a system changes, how do you manage change?

•  Keep basic interfaces stable

•  If you do change interfaces, keep a place to stand
– Compatibility package (a.k.a. shim layer)

implementing old interface atop new interface

62

Continuity

•  Plan to throw one away (you will anyhow)
– Brooks’ observation in The Mythical Man-Month
–  It pays to revisit old design decisions with the benefit

of hindsight

•  Keep secrets of the implementation
– Assumptions about the implementation that clients

are not allowed to make
•  In other words, things that can change

•  Instead of generalizing, use a good idea again

63

Implementation

•  Handle normal and worst cases separately:

– The normal case must be fast;
– The worst case must make some progress

64

Handling all the cases

•  Use indirection
– Go through an intermediary to an object

•  Examples:
– Virtual memory
– Compiler’s intermediate representation (between

high-level and machine languages)
– We’ll see another example when we discuss

System R (Lecture 3)

65

A possibly-missing hint:

•  Today: Read S&K assigned reading, “Worse is Better”
and Lampson’s “Hints”

•  Monday 9/21 paper discussion:
– The Log-Structured File System
– Plan 9 Operating system

•  Excellent papers, so an opportunity: Sign up to
present on Monday by emailing TA today
– Mandatory: Everyone sign up to review one of

the two papers by the end of the day today
•  If no volunteers, we will randomly assign a presenter

tomorrow morning!

66

For next time…

