
1

Topic 18:
Virtual Memory

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Virtual Memory

Any time you see virtual, think “using a level of
indirection”

Virtual memory: level of indirection to physical memory

•  Program uses virtual memory addresses
•  Virtual address is converted to a physical address
•  Physical address indicates physical location of data

•  Physical location can be memory or disk!
0x800

Virtual address

Mem: 0x3C00

Physical address

Disk: 0x803C4

3

Virtual Memory

4

Virtual Memory

1

5

Virtual Memory: Take 1

Main memory may not be large enough for a task
•  Programmers turn to overlays and disk

•  Many programs would have to do this

•  Programmers should have to worry about main memory
size across machines

Use virtual memory to make memory look bigger for all
programs

6

A System with Only Physical Memory

Examples: Most Cray machines, early PCs, nearly all
current embedded systems, etc.

CPU

0:
1:

N-1:

Memory

Store 0x10

Load 0xf0

CPU’s load or store addresses used directly to access memory.

7

A System with Virtual Memory

Examples: modern workstations, servers, PCs, etc.

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

Load 0xf0

0:
1:

P-1:

Page Table

Store 0x10

Disk

Virtual
Addresses Physical

Addresses

8

Page Faults (Similar to “Cache Misses”)

What if an object is on disk rather than in memory?
1.  Page table indicates that the virtual address is not in memory
2.  OS trap handler is invoked, moving data from disk into memory

•  Current process suspends, others can resume
•  OS has full control over placement, etc.

CPU

0:
1:

N-1:

Memory

Load 0x05

0:
1:

P-1:

Page Table

Store 0xf8

Disk

Virtual
Addresses Physical

Addresses

Working
Set

9

Virtual Memory

2

10

Virtual Memory: Take 2

Concurrently executing programs will interfere in memory
•  At some point, programs assume addresses
•  These addresses may conflict if we don’t manage them.
•  Which programs will execute concurrently?

•  Don’t know
•  Manage dynamically

•  Programs can maliciously interfere with each other!
•  They need protection from one another

Use virtual memory to avoid/manage conflict between
programs

11

Process 1:

Virtual Addresses Physical Addresses

VP 1
VP 2

Process 2:

PP 2
Address Translation 0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(Read-only
library code)

Separate Virtual Address Spaces

•  Each process has its own virtual address space
•  OS controls how virtual is assigned to physical memory

12

Motivation: Process Protection
 Page table entry contains access rights information
•  Hardware enforces this protection (trap into OS if

violation occurs)
Page Tables

Process i:

Physical Addr Read? Write?
 PP 9 Yes No

 PP 4 Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
• • •

• • •

• • •

Process j:

0:
1:

N-1:

Memory

Physical Addr Read? Write?
 PP 6 Yes Yes

 PP 9 Yes No

XXXXXXX No No
• • •

• • •

• • •

VP 0:

VP 1:

VP 2:

13

Virtual Memory

3

14

Virtual Memory: Take 3

Programs and data exist on disk
•  Registers, caches, and memory just make using the

data on disk faster
•  Locality at different granularities

Use virtual memory to improve performance, hide physical

location from program

15

Levels in Memory Hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
block size:

200 B
3 ns

8 B

Register Cache Memory Disk Memory
32 KB / 4MB
6 ns
$100/MB
32 B

128 MB
60 ns
$1.50/MB
8 KB

20 GB
8 ms
$0.05/MB

larger, slower, cheaper

8 B 32 B 8 KB

cache virtual memory

16

17

Virtual Memory

Just like caches, but origins are different
•  Cache - performance goals
•  Virtual Memory - programmability/multiprogram goals

Blocks are called Pages
•  A virtual address consists of

•  A virtual page number
•  A page offset field (low order bits of the address)

Virtual page number Page offset
0 11 31

Page Tables

Each process gets its own page table, why?

Page Tables

Can’t Execute From Here

20

Page Faults

Blocks are called Pages
Page Tables translate virtual to physical page numbers

Misses are call Page faults (handled as an exception)
•  Retrieve data from disk
•  Huge miss penalty, pages are fairly large (how big?)
•  Reducing page faults is important
•  Can handle the faults in software instead of hardware
•  Using write-through is too expensive, use writeback

Virtual page number Page offset
0 11 31

21

Servicing a Page Fault

1.  Make space in memory by writing physical page to disk
•  Page Frames
•  Replacement policy?

2.  Load page
•  Loading pages could waste processor time, use DMA
•  DMA allows processor to do something else

3.  OS updates the process's page table
•  Desired data is in memory for process to resume

22

Servicing a Page Fault

1.  Processor Signals Controller
 “Read block of length P
starting at disk address X and
store starting at memory
address Y”

2.  DMA Read Occurs
3.  I / O Controller Signals

Completion
•  Interrupts processor
•  Can resume suspended process

disk Dis
k

disk Disk

Memory-I/O bus

Processor

Cache

Memory
I/O

controller

Reg

(2) DMA Transfer

(1) Initiate Block Read

(3) Read
Done

Where Is the Page Table?

24

Making Translation Faster: The TLB
Translation Look-Aside Buffer

TLB Design Issues

Accessed frequently: speed is important

TLB Miss Involves (not to be confused with page fault):

1.  Stall pipeline
2.  Invoke Operating System (what about OS pages?)
3.  Read Page Table
4.  Write entry in TLB (evicting old entry?)
5.  Return to user code
6.  Restart at reference

MIPS.
Another HW Option?

26

TLB Design Issues

Clearly, we want to minimize TLB misses:

•  Can be fully-associative, set-associative, or direct
mapped

•  Often fully associative, can be set associative

•  Sized to maximize hits, but make timing
•  Usually not more than 128, 256 entries (associtivity)

27

28

Loading Your Program: A Neat Trick

1.  Ask operating system to create a new process
2.  Construct a page table for this process
3.  Mark all page table entries as invalid with a pointer to

the disk image of the program
4.  Run the program and get an immediate page fault on

the first instruction.

29

Process Interactions

Virtual Addresses are per Process
Context Switch: Save “state”: regs, PC, page table (PTBR)

TLB?
•  Could Flush TLB

•  Every time perform context switch
•  Refill for new process by series of TLB misses
•  ~100 clock cycles each

•  Could Include Process ID Tag with TLB Entry
•  Identifies which address space being accessed
•  OK even when sharing physical pages

30

Virtual Memory Summary

Virtual memory provides
•  Protection and sharing
•  Illusion of large main memory
•  Speed/Caching (when viewed from disk perspective)

•  Virtual Memory requires twice as many memory
accesses, so cache page table entries in the TLB.

•  Three things can go wrong on a memory access
•  TLB miss
•  Page fault
•  Cache miss

Caches and virtual memory?

