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These the same? 
 

Problem size is defined by SIZE_X and SIZE_Y 
 
Code 1: 
for(x = 0; x < SIZE_X; x++) 
    for(y = 0; y < SIZE_Y; y++) 
      sum += Array[x][y]; 
 
Code 2: 
 for(y = 0; y < SIZE_Y; y++) 
    for(x = 0; x < SIZE_X; x++) 
      sum += Array[x][y]; 
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2 Bytes of Memory (circa 1947) 
 

•  Maurice Wilkes, in 1947, 
with first mercury tank 
memories built for EDSAC. 
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Memory (circa 2004) 
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We have a problem! 
 

µProc 
60%/yr. 
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Memory Speed and Cost 
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The Principle of Locality 
 

•  Program access a relatively small portion of the address 
space at any instant of time. 

•  The “90-10” rule… 

Temporal Locality 
•  If an item is referenced, it will tend to be referenced 

again soon 
  

Spatial Locality 
•  If an item is referenced, nearby items will tend to be 

referenced soon 
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Temporal and Spatial Locality 
 

for (i=0; i<1000; i++) { 
 for (j=0; j<1000; j++) { 
  A[i,j] = B[i,j] + C[i,j]; 
 } 

} 
if (errorcond) { 
 … 

} 
for (i=0; i<100; i++) { 
 for (j=0; j<100; j++) { 
  E[i,j] = D[i,j] * A[i,j]; 
 } 

} 
 

Data reference stream locality? 
 
Instruction stream locality? 

 
 
Working Sets: 
•  Working set refers to portion 

of the address space accessed 

•  Different phases of execution 
may localize on different 
pieces of data/code (phased 
behavior) 
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One Solution: Caching 
 

•  Hit: data appears in cache (example: Block X)  
•  Hit Rate: Fraction of memory access found in cache 
•  Hit Time: Time to access cache (deliver data and determine hit/miss) 

•  Miss: data not in cache (Block Y) 
•  Miss Rate  = 1 - (Hit Rate) 
•  Miss Penalty: Time to replace a block in cache + deliver data 

•  Hit Time << Miss Penalty 

Memory 
Cache To datapath 

From datapath 
Blk X 

Blk Y 
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Cache Management? 
 

•  Compiler/Programmer, Static 

•  Compiler/Programmer, Dynamic 
•  Memory/Disk 
•  Operating system with HW support (virtual memory) 
•  Demand Fetched 

•  Hardware, Dynamic 
•  CPU/Memory 
•  Demand Fetched 

Invisible to the program, except for performance 
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Improving Cache Performance:  
3 Paths 

Memory Latency = hit time + P(miss) * miss penalty 

•  Reduce the miss rate 

•  Reduce the miss penalty 

•  Reduce the time to hit in the cache. 

Look at the cache design strategies that impact these…  
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Direct Mapped Cache 
 

Mapping: address is modulo the number of blocks  
When can this behave badly?  Pros? 
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Block Placement 
Direct Mapped Cache 
•  How many hits, misses in direct mapped cache (mod 256)? 

•  Read location 0: Miss 
•  Read location 16: Miss 
•  Read location 32: Miss 
•  Read location 0: Hit 
•  Read location 16: Hit 
•  Read location 32: Hit 
•  Read location 256: Miss 
•  Read location 256: Hit 
•  Read location 0: Miss 

•  Miss rate = 5/9 = 55% 
•  Note “types” of misses: 

•  Cold misses 
•  Conflict misses 
•  Also a third type (not here): capacity misses 
•  The three “C”s of cache misses 
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Direct Mapped Cache: Hardware 
 

•  Implementation of Mod 
 

•  Tags 
•  Valid 
•  Data 
•  How much state? 

Direct Mapped Cache: Hardware 
Capture Spatial Locality  

Know how to size these! 
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4 Questions for Caching 
Answers for Direct Mapped Caching? 

•  Q1: Where can a block be placed in cache?  
(Block placement) 

•  Q2: How is a block found if it is in cache?  
(Block identification) 

•  Q3: Which block should be replaced on a miss?  
(Block replacement) 

•  Q4: What happens on a write?  
(Write strategy) 
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Reduce Conflict Misses 
 

Memory time = Hit time + Prob(miss) * Miss penalty 
 
•  Previous example demonstrated conflict misses in 

direct-mapped cache 

•  Associativity: Allow blocks to go to several frames in 
cache 

•  Helps avoid pathological conflicts: 0,256,0,256,0,256… 
•  2-way set associative: each block maps to either of 2 

cache frames 
•  Fully associative: each block maps to any cache frame 
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Four-Way Set Associative Cache 
 

Know how to size these! 
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Direct à Fully Associative 
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Associativity: Hardware Cost 
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4 Questions for Caching 
Set/Fully Associative Mapped Caching? 

•  Q1: Where can a block be placed in cache?  
(Block placement) 

•  Q2: How is a block found if it is in cache?  
(Block identification) 

•  Q3: Which block should be replaced on a miss?  
(Block replacement) 

•  Q4: What happens on a write?  
(Write strategy) 
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Caches take up 20-40+% of chip area! 
 

Itanium 2 “McKinley” Pentium 
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We still have a problem! 
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Caching and The Principle of Locality 
 

•  Program access a relatively small portion of the address 
space at any instant of time. (90-10 rule) 

 
Temporal Locality 
•  If an item is referenced, it will tend to be referenced 

again soon 
  

Spatial Locality 
•  If an item is referenced, nearby items will tend to be 

referenced soon 

USE CACHES! 
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Spatial Locality in Instruction & Data 
 

Instruction and Data References have distinct behavior: 
 
 
 
 
 
 
Split Instruction and Data Caches 
•  Optimize for behavior 
•  Smaller caches are faster 
•  Problem - when data is code or code is data 

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%



Direct Mapped Cache, Increased Block Size 
Capture Spatial Locality  

Block Size Increase: Miss Rate 
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Block Size Increase: Overall Performance 
 

Miss 
Penalty 

Block Size

Increased Miss Penalty 
and Miss Rate 

Average 
Access 
Time 

Block Size
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Block Size Increase: Fill Time 
 

Larger Block Size à Must Wait for Block to Fill 

Early Restart 
•  Deliver word to process/continue execution when word 

requested is delivered. 

Critical Word First 
•  Early Restart and Fetch the requested word first. 
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The Three Types of Cache Misses 
1. Conflict Misses 

•  Two distinct memory addresses map to the same cache 
location 

•  Big problem in direct-mapped caches 

How do we reduce these? 
 
Solution 1: Make cache bigger  (limits) 
 
Solution 2: … 
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Four-Way Set Associative Cache 
Avoid Conflicts 
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Conflict 

Rule of Thumb:  a direct-mapped cache of size N has about 
the same miss rate as a 2-way set associative cache of size N/2. 

36 

The Three Types of Cache Misses 
2. Capacity Misses 

•  Occurs because the cache has a limited size 
•  Increase the size of the cache, it goes away 

•  Sketchy definition, so just get the general idea 
•  Easy to understand in Fully Associative Caches. 

How do we reduce these? 
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Cache Size (KB)   
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Conflict 

Fully Associative Cache yields no conflict misses. 
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The Three Types of Cache Misses 
3. Compulsory Misses 

•  Occur when a program is first started 

•  Cache does not contain any of program’s data yet 

How do we reduce these? 
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Prefetching! 
Reduces all types of misses, including “compulsory”! 

Original Code: 
 for(y = 0; y < SIZE_Y; y++) 
    for(x = 0; x < SIZE_X; x++) 
      sum += Array[x][y]; 
 
Code with Prefetching (ignoring boundary condition): 
 for(y = 0; y < SIZE_Y; y++) 
    for(x = 0; x < SIZE_X; x++) { 
      junk = Array[x+16][y]; 
      sum += Array[x][y];  
} 
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Conflict 

Fully Associative Cache yields no conflict misses. 
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3C Summary 
 
Compulsory misses (cold start) 
•  Cold fact of life 
•  First time data is referenced 
•  Run billions of instructions, become insignificant 
Capacity misses 
•  Working set is larger than cache size 
•  Solution: increase cache size 
Conflict misses 
•  Multiple memory locations mapped to the same location 
•  One set fills up, but space in other cache sets 
•  Solution 1: increase  cache size 
•  Solution 2: increase associative indexes 
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Multi-Level Caches 
 

Inclusive vs. Exclusive 
 
Sample Sizes: 
•  L1: 32KB, 32 Byte Lines, 4-Way Set Associative 
•  L2: 256KB, 128 Byte Lines, 8-Way Set Associative 
•  L3: 4MB, 256 Byte Lines, Direct Mapped 

Memory disk

L1 Icache

L1 Dcacheregs L2 
Cache

Processor

Options: separate data and instruction caches, or a unified cache 
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Split Instruction and Data Caches 
 

Self-Modifying Code!?!? 
•  Ignore problem, software must flush cache 
•  Permit duplicate lines: invalidate I-cache line on write 
•  Do not permit duplicate lines: data is exclusive to D- or 

I-Cache 

•  Page Faults - More next week 
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Handling Writes in Caches 
 

First, Two Observations: 
1.  Writes change state à wait until exceptions are cleared 
2.  Stores aren’t the source of a dependence - latency 

tolerant 
 
Typical Implementation Decisions: 
•  Cache write policy? 

•  Write-Through 
•  Write-Back 
•  Write-Around 

•  Include a Write buffer? 
•  Small pseudo-FIFO buffer alongside cache 
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Write-Back vs. Write-Through Caches 
 
Write back 
•  Writes only go into top level of 

hierarchy 
•  Maintain a record of “dirty” 

lines 
•  Faster write speed (only has to 

go to top level to be 
considered complete) 

Write through 
•  All writes go into L1 cache and 

then also write through into 
subsequent levels of hierarchy 

•  Better for “cache coherence” 
issues 

•  No dirty/clean bit records 
required 

•  Faster evictions 

Write Around? 
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Write Buffer 
 

Source: Skadron/Clark 
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Cache Summary 
 

•  Two types of locality: spatial and temporal 
•  Spatial locality: larger block sizes 
•  Cache contents include data, tags, and valid bits 

•  Miss penalty is increasing (processor vs. memory) 
•  Modern processors use set-associative caches worth the 

cost 

•  Multi-level caches used to reduce miss penalty 

•  Variations: Victim Caches, Trace Caches 


