
1

Topic 16:
Memory Caching

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

These the same?

Problem size is defined by SIZE_X and SIZE_Y

Code 1:
for(x = 0; x < SIZE_X; x++)
 for(y = 0; y < SIZE_Y; y++)
 sum += Array[x][y];

Code 2:
 for(y = 0; y < SIZE_Y; y++)
 for(x = 0; x < SIZE_X; x++)
 sum += Array[x][y];

3

2 Bytes of Memory (circa 1947)

•  Maurice Wilkes, in 1947,
with first mercury tank
memories built for EDSAC.

4

Memory (circa 2004)

5

We have a problem!

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs) 1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Performance Gap (latency)

6

Memory Speed and Cost

7

The Principle of Locality

•  Program access a relatively small portion of the address
space at any instant of time.

•  The “90-10” rule…

Temporal Locality
•  If an item is referenced, it will tend to be referenced

again soon

Spatial Locality
•  If an item is referenced, nearby items will tend to be

referenced soon

8

Temporal and Spatial Locality

for (i=0; i<1000; i++) {
 for (j=0; j<1000; j++) {
 A[i,j] = B[i,j] + C[i,j];
 }

}
if (errorcond) {
 …

}
for (i=0; i<100; i++) {
 for (j=0; j<100; j++) {
 E[i,j] = D[i,j] * A[i,j];
 }

}

Data reference stream locality?

Instruction stream locality?

Working Sets:
•  Working set refers to portion

of the address space accessed

•  Different phases of execution
may localize on different
pieces of data/code (phased
behavior)

9 10

One Solution: Caching

•  Hit: data appears in cache (example: Block X)
•  Hit Rate: Fraction of memory access found in cache
•  Hit Time: Time to access cache (deliver data and determine hit/miss)

•  Miss: data not in cache (Block Y)
•  Miss Rate = 1 - (Hit Rate)
•  Miss Penalty: Time to replace a block in cache + deliver data

•  Hit Time << Miss Penalty

Memory
Cache To datapath

From datapath
Blk X

Blk Y

11

Cache Management?

•  Compiler/Programmer, Static

•  Compiler/Programmer, Dynamic
•  Memory/Disk
•  Operating system with HW support (virtual memory)
•  Demand Fetched

•  Hardware, Dynamic
•  CPU/Memory
•  Demand Fetched

Invisible to the program, except for performance

12

Improving Cache Performance:
3 Paths

Memory Latency = hit time + P(miss) * miss penalty

•  Reduce the miss rate

•  Reduce the miss penalty

•  Reduce the time to hit in the cache.

Look at the cache design strategies that impact these…

13

Direct Mapped Cache

Mapping: address is modulo the number of blocks
When can this behave badly? Pros?

14

Block Placement
Direct Mapped Cache
•  How many hits, misses in direct mapped cache (mod 256)?

•  Read location 0: Miss
•  Read location 16: Miss
•  Read location 32: Miss
•  Read location 0: Hit
•  Read location 16: Hit
•  Read location 32: Hit
•  Read location 256: Miss
•  Read location 256: Hit
•  Read location 0: Miss

•  Miss rate = 5/9 = 55%
•  Note “types” of misses:

•  Cold misses
•  Conflict misses
•  Also a third type (not here): capacity misses
•  The three “C”s of cache misses

15

Direct Mapped Cache: Hardware

•  Implementation of Mod

•  Tags
•  Valid
•  Data
•  How much state?

Direct Mapped Cache: Hardware
Capture Spatial Locality

Know how to size these!

17

4 Questions for Caching
Answers for Direct Mapped Caching?

•  Q1: Where can a block be placed in cache?
(Block placement)

•  Q2: How is a block found if it is in cache?
(Block identification)

•  Q3: Which block should be replaced on a miss?
(Block replacement)

•  Q4: What happens on a write?
(Write strategy)

18

19

Reduce Conflict Misses

Memory time = Hit time + Prob(miss) * Miss penalty

•  Previous example demonstrated conflict misses in

direct-mapped cache

•  Associativity: Allow blocks to go to several frames in
cache

•  Helps avoid pathological conflicts: 0,256,0,256,0,256…
•  2-way set associative: each block maps to either of 2

cache frames
•  Fully associative: each block maps to any cache frame

20

Four-Way Set Associative Cache

Know how to size these!

21

Direct à Fully Associative

22

Associativity: Hardware Cost

23

4 Questions for Caching
Set/Fully Associative Mapped Caching?

•  Q1: Where can a block be placed in cache?
(Block placement)

•  Q2: How is a block found if it is in cache?
(Block identification)

•  Q3: Which block should be replaced on a miss?
(Block replacement)

•  Q4: What happens on a write?
(Write strategy)

24

Caches take up 20-40+% of chip area!

Itanium 2 “McKinley” Pentium

25 26

We still have a problem!

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs) 1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Performance Gap (latency)

27

Caching and The Principle of Locality

•  Program access a relatively small portion of the address
space at any instant of time. (90-10 rule)

Temporal Locality
•  If an item is referenced, it will tend to be referenced

again soon

Spatial Locality
•  If an item is referenced, nearby items will tend to be

referenced soon

USE CACHES!

28

Spatial Locality in Instruction & Data

Instruction and Data References have distinct behavior:

Split Instruction and Data Caches
•  Optimize for behavior
•  Smaller caches are faster
•  Problem - when data is code or code is data

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Direct Mapped Cache, Increased Block Size
Capture Spatial Locality

Block Size Increase: Miss Rate

31

Block Size Increase: Overall Performance

Miss
Penalty

Block Size

Increased Miss Penalty
and Miss Rate

Average
Access
Time

Block Size
32

Block Size Increase: Fill Time

Larger Block Size à Must Wait for Block to Fill

Early Restart
•  Deliver word to process/continue execution when word

requested is delivered.

Critical Word First
•  Early Restart and Fetch the requested word first.

33

The Three Types of Cache Misses
1. Conflict Misses

•  Two distinct memory addresses map to the same cache
location

•  Big problem in direct-mapped caches

How do we reduce these?

Solution 1: Make cache bigger (limits)

Solution 2: …

34

Four-Way Set Associative Cache
Avoid Conflicts

35

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

2:1 Cache Rule

Conflict

Rule of Thumb: a direct-mapped cache of size N has about
the same miss rate as a 2-way set associative cache of size N/2.

36

The Three Types of Cache Misses
2. Capacity Misses

•  Occurs because the cache has a limited size
•  Increase the size of the cache, it goes away

•  Sketchy definition, so just get the general idea
•  Easy to understand in Fully Associative Caches.

How do we reduce these?

37

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8 16 32 64 12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

Capacity Misses

Conflict

Fully Associative Cache yields no conflict misses.

38

The Three Types of Cache Misses
3. Compulsory Misses

•  Occur when a program is first started

•  Cache does not contain any of program’s data yet

How do we reduce these?

39

Prefetching!
Reduces all types of misses, including “compulsory”!

Original Code:
 for(y = 0; y < SIZE_Y; y++)
 for(x = 0; x < SIZE_X; x++)
 sum += Array[x][y];

Code with Prefetching (ignoring boundary condition):
 for(y = 0; y < SIZE_Y; y++)
 for(x = 0; x < SIZE_X; x++) {
 junk = Array[x+16][y];
 sum += Array[x][y];
}

40

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

Compulsory Misses

Conflict

Fully Associative Cache yields no conflict misses.

41

3C Summary

Compulsory misses (cold start)
•  Cold fact of life
•  First time data is referenced
•  Run billions of instructions, become insignificant
Capacity misses
•  Working set is larger than cache size
•  Solution: increase cache size
Conflict misses
•  Multiple memory locations mapped to the same location
•  One set fills up, but space in other cache sets
•  Solution 1: increase cache size
•  Solution 2: increase associative indexes

42

43

Multi-Level Caches

Inclusive vs. Exclusive

Sample Sizes:
•  L1: 32KB, 32 Byte Lines, 4-Way Set Associative
•  L2: 256KB, 128 Byte Lines, 8-Way Set Associative
•  L3: 4MB, 256 Byte Lines, Direct Mapped

Memory disk

L1 Icache

L1 Dcacheregs L2
Cache

Processor

Options: separate data and instruction caches, or a unified cache

44

Split Instruction and Data Caches

Self-Modifying Code!?!?
•  Ignore problem, software must flush cache
•  Permit duplicate lines: invalidate I-cache line on write
•  Do not permit duplicate lines: data is exclusive to D- or

I-Cache

•  Page Faults - More next week

46

Handling Writes in Caches

First, Two Observations:
1.  Writes change state à wait until exceptions are cleared
2.  Stores aren’t the source of a dependence - latency

tolerant

Typical Implementation Decisions:
•  Cache write policy?

•  Write-Through
•  Write-Back
•  Write-Around

•  Include a Write buffer?
•  Small pseudo-FIFO buffer alongside cache

47

Write-Back vs. Write-Through Caches

Write back
•  Writes only go into top level of

hierarchy
•  Maintain a record of “dirty”

lines
•  Faster write speed (only has to

go to top level to be
considered complete)

Write through
•  All writes go into L1 cache and

then also write through into
subsequent levels of hierarchy

•  Better for “cache coherence”
issues

•  No dirty/clean bit records
required

•  Faster evictions

Write Around?

48

Write Buffer

Source: Skadron/Clark

49

Cache Summary

•  Two types of locality: spatial and temporal
•  Spatial locality: larger block sizes
•  Cache contents include data, tags, and valid bits

•  Miss penalty is increasing (processor vs. memory)
•  Modern processors use set-associative caches worth the

cost

•  Multi-level caches used to reduce miss penalty

•  Variations: Victim Caches, Trace Caches

