
1

Lecture 15:

Register Transfer Language and

Verilog

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Bochao Wang
(Based on slides by David Penry and Neil Vachharajani)

(Prof. David August)

2

RTL (Register Transfer Language)

• Designing processors at the gate level is difficult

• Use a higher-level language

RTL: a language for describing the behavior of computers
in terms of step-wise register contents

3

RTL Tools

RTL, just like (most) programming languages:

• Precise and unambiguous

• Programmer must debug

• Code can be checked automatically for certain
properties

• Type checking

• Check RTL model against more abstract state machine

• Tools can process the code

• RTL  simulator

• RTL  processor

• RTL 

4

Hardware Description Languages

• Used to describe hardware for simulation and synthesis

• Why? Designs are too big to just draw schematics

• Major languages:

• Verilog

• Cadence, Inc.

• Emphasis on practical use (I/O well-defined, ability to record)

• Possibly most widely used

• VHDL

• Department of Defence

• Emphasis on abstraction (derived from Ada)

• Popular in academic circles, Europe; required of defence contractors

• SystemC

• Synopsys, Inc.

• Emphasis is “higher-level” simulation – really just a C++ template library

• Up-and-coming

5

Simulation vs. Synthesis

• HDLs are used for both simulation and synthesis

• Simulation: does the design work?

• Can also be used for “does the design meet timing?”

• Synthesis: generate a circuit that is equivalent

• Recognize state and combinational logic

• Optimize the circuit

Not all valid HDL programs are synthesizable

6

Verilog Design Flow

7

Example

Modules have initial, continuous, and always blocks

8

Modified Example

• Use assign statement for combinational circuit

• Note the bit-wise operators (implies wire width…)

9

Elements of Verilog

10

Basic syntax

• ; is the statement terminator (terminator, not

separator)

• /* */ for multi-line comments

• // can be used for single-line comments

• Constants can have bit-width and radix:

<bit-width>’<radix><val>

32’h1234ab34 = 1234ab3416

8’b0100_0110 = 010001102 ; note that underlines are legal

11

Datatypes

• 4-valued logic: 0, 1, x, z

• 0, 1 – normal binary 0 and 1

• z – high-impedance value: this is what tri-state buffers drive
when they are off

• x – simulator doesn’t know; sometimes used as “don’t care”

• Integers – don’t use these outside of test benches

• At simulation start, all signals have x’s in every bit

• Unconnected inputs to a module have value ‘z’.

12

Module Overall Structure

module the_design (input, output);

Declarations: ports, constants, variables(wire, reg)

Instantiations of other modules

Continuous assignment: assign y = ...

Behavioral statements (initial, always) {

procedural blocking assignment

procedural nonblocking assignment

}

endmodule

13

Signals

• Signal: a “variable” that can have values assigned “ahead of time”

• Can be thought of as a wire or a group of wires

• Syntax:

<kind> [<width specifier>] name, name, …;

• Examples:
reg [15:0] IR;

wire [3:0] a; a[3] is MSB

wire [1:8] b; b[1] is MSB //not recommend

wire doit;

• Registers vs. wires:

• Reg: inside “always” block, lhs, e.g. IR = …

• Wire: outside “always” block, lhs, e.g. assign a = …

14

Wires

• Wires need not be declared unless it is multiple wires

module example(b, c);

input b;

output c;

wire a; // not necessary

wire [3:0] d; // necessary

…

assign c = b | a;

endmodule

15

Register Transfer Language?

• Variables correspond to the hardware registers

• “always” blocks

Module D_FlipFlop(Q, D, CLK);

output Q;

reg Q;

input D, CLK;

always @(negedge CLK) // Sensitivity List

begin // Not needed for 1 statement

Q <= D; // Note: No assign

end

endmodule

16

Module Overall Structure

module the_design (input, output);

Declarations: ports, constants, variables(wire, reg)

Instantiations of other modules

Continuous assignment: assign y = ...

Processes(initial, always) {

procedural blocking assignment

procedural nonblocking assignment

}

endmodule

17

Modules

• Allow you to organize the design hierarchically

• Allow structural reuse of the design

• Defining a module:

• Example:
module flop (clk, D, Q); // name, list of ports

input clk; // define directions of ports

input D;

output Q;

…. // code to do things

endmodule

• Instantiating a module:
flop U1 (.clk(someclk), .D(someD), .Q(someQ));

18

Module Overall Structure

module the_design (input, output);

Declarations: ports, constants, variables(wire, reg)

Instantiations of other modules

Continuous assignment: assign y = ...

Processes(initial, always) {

procedural blocking assignment

procedural nonblocking assignment

}

endmodule

19

Kinds of assignments

• Continuous (assign =)

• Only to “wire”

• Always sensitive to things on the right-hand side

• Blocking (=)

• Made inside a process

• Only to “reg”

• Value of lhs changes immediately

• Non-blocking (<=)

• Made inside a process

• Only to “reg”

• Value of lhs changes only after all rhs have been evaluated

• A time-spec after the statement says to wait before changing the value

• Continue executing process even if there is a time-spec

20

Assignment

a = b Do Sequentially (blocking, sequentially)

A <= b Do RHS first (nonblocking, grab at t=0)

Which 3 are Shift Registers?

Z<=Y; Y<=X;

Y<=X; Z<=Y;

Z=Y; Y=X;

Y=X; Z=Y;

21

Processes

• A group of sequential statements; three kinds:

• Initial - runs only at simulation start

• Always – runs over and over

• Continuous – special syntax for a common kind of always block

• Can be suspended, waiting for something to happen

• For a signal in a group of signals to change

• For an amount of time to pass

• For a signal to become true (I’ve never needed this)

22

Process examples

reg rst_l, Q;

wire cachehit;

initial begin

rst_l = 0;

#300;

rst_l = 1;

end

always @(posedge clk)

Q <= #1 D;

assign cachehit = comparator_matches & valid;

23

Assignment examples

reg rst_l, Q;

wire cachehit;

initial begin

rst_l = 0; // blocking

#300;

rst_l = 1; // blocking

end

always @(posedge clk)

Q <= #1 D; // non-blocking

assign cachehit = comparator_matches &

valid; // continuous

24

Blocking a process

• Wait for signals to change:
always @(signal1 or signal2)

• Wait for a signal edge:
always @(posedge clk or negedge rst_l)

• Wait for time:
300;

300 a = b; // can also put before a statement

• Wait for logical value:
wait(b); // I’ve never used this

25

Operators

• Most of the operators look like C:
• Bitwise operators: &, |, ~, ^

• Logical operators: &&, ||, !

• Comparisons: ==, !=, <, <=, >, >=
• If either operand is x or z, they return FALSE.

• Arithmetic: +, -, *, /, %, <<, >>

• Choice: ?:

• Order of operations may differ from C; use parenthesis

• Special operators:
• Comparison with x or z values: ===, !==

• Bitwise operators can be used as reduction operators:
(|x) = or all the bits of x together.

26

Statements

• Control structures
• C-like: if, while, for

• forever – do following statement forever

• repeat (<#>) – do following statement a number of times

• case (see next slide)

• Parallel control structures
• fork/join – do statements in between in parallel

• Signal overrides
• force – override the value of a signal

• release – stop overriding the value of a signal

27

Case statements

• Rather different from C switch statements:
case (myvar)

1 : dothis = 1;

2 : dothat = 3;

3 : dosomemore = 4;

default: noneoftheabove = 1;

endcase

• Note that there are no fall-throughs

• Multiple statements inside one case require begin/end
around them

28

Example: 4 to 1 Mux

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

output out;

input i0, i1, i2, i3;

input s1, s0;

reg out;

always @(s1 or s0 or i0 or i1 or i2 or i3)

begin

case ({s1, s0})

2'b00: out = i0;

2'b01: out = i1;

2'b10: out = i2;

2'b11: out = i3;

default: out = 1'bx; // x is don’t care

endcase

end

endmodule

29

Parameters

• Increases ability to reuse modules

• Defining a parameter (with a default value):
parameter me = 3;

• Overriding the default value
defparam myunit.me = 4;

• Can also use a #(value) syntax when instantiating for modules
with small numbers of parameters:
e.g. module my_module #(parameter BIT_WIDTH = 32, …)

(input clk, input [BIT_WIDTH-1:0] addr, output a…)

30

Using the mux module

• It’s a 4-input mux for busses with a ‘width’ parameter for the size
of the bus

wire [7:0] A,B,C,D, result;

wire [1:0] sel;

mux4 mymux (.out(result), .in0(A), .in1(B),

.in2(C), .in3(D), .sel(sel));

defparam mymux.width = 8;

OR

mux4 #(8) mymux (.out(result), .in0(A), .in1(B),

.in2(C), .in3(D), .sel(sel));

31

Preprocessor directives

• Always begin with a back-tick

• `define name value

• defined values are referenced as `name

32

A Sample Finite State Machine

reg [1:0] state;

`define IDLE 2’b00

`define READ 2’b01

`define WRITE 2’b10

`define DONE 2’b11

always @(posedge clk or negedge rst_l)

if (~rst_l) state <= `IDLE;

else

case (state)

`IDLE:

if (req)

if (wr) state <= `WRITE;

else state <= `READ;

else state <= `IDLE; // not strictly necessary

`READ:

state <= `DONE;

`WRITE:

state <= `DONE;

`DONE:

state <= `IDLE;

default:

state <= `IDLE;

endcase

33

Dealing with Synthesis

• Things you can’t synthesize reliably:
• Some for loops (hard to guess)

• @() in the middle of a process

• Time specifiers

• force/release

• Watch out for hidden latches!
always @(a)

c = a | b;

• Actually creates a latch

• All things on the rhs must go on the sensitivity list unless you are
trying to create a state element

• Using don’t cares:
• If you really don’t care about a value, assign x to it, and the synthesis

tool will choose a value which simplifies the logic

34

My Rules

• Make all flops (edge-sensitive always blocks) use a non-blocking
assigment with #1 delay

• Easier to see what’s going on in waverforms

• Make all other always blocks use blocking assignment and use
complete sensitivity lists
• always @(*) for next state logic combinational

• always @(posedge clk) for sequential

• Do combinational logic in continuous assignments except for next
state logic

35

Another Sample Finite State Machine

Thank you

36

37

Using the regfile2 module

• You should use this module for your register file.
• It synthesizes properly

• It has a nice task for displaying the register file contents

• Interesting characteristics:
• One read ports, one read/write port

• Port A writes if the enable bits are set (bytes are controlled
individually); it will always read as well

• Port B can only read

• Clocked on the positive edge of the clock (you can’t do the write in first
half, read in second half trick from P & H)

• If you name your datapath DATA (the instance name, not the
module name), and make IR_Enable a signal indicating when the
IR is to be loaded with a new instruction, you can uncomment code
in monitors.v to get automatic register dumps before each
instruction.

38

Functions and tasks

• Functions are like C functions, but cannot have side effects

• Tasks do not have return values, but can have side effects

• Examples:
function [31:0] add1;

input [31:0] x;

begin

add1 = x + 1;

end

endfunction

task addtask;

input [31:0] x;

output [31:0] y;

begin

y = x + 1;

mycrazysignal = 3;

end

endtask

39

I/O

• Displaying data:
$display(<format string>, ….);

• Like printf, but

• %b gives binary; %h gives hex

• %t formats a time value

• automatically puts on a newline

• Recording signals:

• $dumpfile(<file name>); – set the dumpfile name

• $dumpvars(<# levels>, <hierarchy>);

• Adds signals below a particular point in the hierarchy to the list of signals to
dump; only decends the hierarchy for the number of levels specified; 0
means no limit

• $dumpon; - turns on dumping

• $dumpoff; - turns off dumping

40

Simulation control

• $finish; – end simulation and exit the simulator

• $stop; – stop simulating; go to the command-line interface

