Topic 14:
Dealing with Branches

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

FLASHBACK: Pipeline Hazards

Control Hazards

e What is the next instruction?

e Branch instructions take time to compute this.

Stall, Predict, or Delay:

Program
execution

order

(in instructions)

v

add $4, $5, $6

lw $3, 300($0)

Time

10

Instruction
Rec Rec
fetch g g
‘ I Instruction Data
2ns fetch access

\

Instruction

Reg

Data
access

b E—

Pipeline Stall - only 1 cycle/stage delay...

FLASHBACK: Pipeline Hazards

Control Hazards

e What is the next instruction?
e Branch instructions take time to compute this.

Delayed Decision (Used in MIPS):

Program
execution | 2 4 6 8 10 12 14
order Time | | | | | | |
(in instructions)

Instruction Data

fetch Reg ALU access Reg

< flsteton)Heegl | P kg | 50% Fill Rate

(Delayed branch slot) 2 ns :
lw $3, 300($0) '”Sftgtf;'on Reg| ALU aECaetfs Reg
\ /
R
2 ns

More about Branch Prediction/Delayed Branching Later...

FLASHBACK: What About Control Hazards?

(Predict Not-Taken Machine)

execution CC 1 CC 2 CC 3 CC 4 CC5 CC 6 cc 7 CC 8 CC9
order

(in instructions)

40 beq $1, $3, 7 IM ~|:|—|: Reg %— DM (—¢t—{Reg A .
= rchitectural
[[l I [l ?
44 and $12, $2, $5 IM — Reg|] %— —I: DM Reg State Change)
48 or $13, $6, $2 IM H HReg[| %— -l: DM HReg
52 add $14, $2, $2 IM (< +H-Reg| | %— -|: DMH H
72 lw $4, 50($7) -HReg| | %— L DM T'H‘ Reg
A 4

We are OK, as long as we squash. Can we reduce delay?

l

I

I

Cold Realities

Pipelines are much longer (Pentium 4 has +22 stages!)
1 branch delay cycle not possible in these designs

Stall
e Makes a Pentium 4 run about as fast as an 80486
e What is the point of pipelining if it is all fill/drain?

Branch Delay Slots
e Very rare to be able to fill more than 1 slot
e Ugly architecture - exposes implementation

Delay slots for a processor that can handle multiple
instructions simultaneously?

Cold Realities

Pipelines are much longer (Pentium 4 has +22 stages!)

Stall - Nope
Branch Delay Slots - Nope

Predict Not Taken
o Roughly 33% of branches are taken

Is a 67% prediction rate good enough?

The Importance of High Prediction Rates

e In general purpose codes, 1 in every 4 or 5 instructions
is a branch.

e Misprediction penalties are high
e 17 wasted cycles in Pentium 4
e 7 wasted cycles in Alpha 21264

Example:

e Pipelining throughput (ideal) = 1 CPI

* 67% prediction rate, 1 in 4 instructions a branch
e 20 cycle penalty

0.25 br/i * 0.33 miss/br * 20 ¢/miss + 1 c/i = 2.67 ¢/i
Slowdown = 2.67X

The Importance of High Prediction Rates

e In real non-scientific codes, 1 in every 4 or 5
instructions is a branch.

e Misprediction penalties are high
e Modern machines execute multiple instructions per cycle

Wide-Issue Example:

e Pipelining throughput (ideal) = 4 IPC (0.25 CPI)
e 67% prediction rate, 1 in 4 instructions a branch
e 20 cycle penalty

0.25 br/i * 0.33 miss/br * 20 ¢/miss + 0.25 c¢/i = 1.9 ¢/i
Slowdown = 7.6x

How do we get better prediction rates?

Better Prediction

e Predictions can be made by the Hardware or by the
Compiler

e Predictions can set before execution (Static) or adapt
during execution (Dynamic)

Hardware Compiler
Static Predict Not Taken
Dynamic

Let’'s Look Here Next For No Apparent Reason

Compiler-Static Prediction

10

Key idea: Compiler indicates a prediction to the HW

Communication Schemes

e Use a prediction bit in your branch encoding
e Bit = 1 - predict taken
e Bit = 0 = predict not-taken

e Backward taken, forward not taken (BTFNT)

» Negative displacement = predict taken
o Positive displacement = predict not-taken

Why BTFNT and not FTBNT?
Does it really matter?

Compiler-Static Prediction

11

Key idea: Compiler indicates a prediction to the HW

Compiler Prediction Methods

e Profiling

e Run program and observe
Issues?

e Rule-based
e Loops do
e Exits don’t

Why?

How do we get better prediction rates?

Better Prediction

e Predictions can be made by the Hardware or by the
Compiler

e Predictions can set before execution (Static) or adapt
during execution (Dynamic)

Hardware Compiler
Static Predict Not Taken | Prediction Bit, BTENT

Dynamic \ /

Advantages of these quadrants?
Disadvantages?

Dynamic Branch Prediction

13

Key idea: Branches have personality

Question: What do you think the branch will do next?

(1 = taken, 0 = not taken)

Branc
Branc
Branc
Branc
Branc

N History: 111 7

n History: 10101010101 ?

n History: 110011001100110011 ?

n History: 000000000011111111111°?

n History: 111111101111 7

How Do We Capture This?

Hardware-Dynamic Branch Prediction

Automata
Consider history of 111111 or 00000

Automaton: Last-Time (LT)

When is a Last-Time predictor better than a compiler static predictor?
What happens the first time the branch is seen?

14

Hardware - Dynamic Branch Prediction

Automata - More States - Better
Other Automata

Consider another pattern with Last-Time:
e1110111011101

e [ast-Time = 6 misses

Only 3 misses with 4 states:

State | Meaning Prediction
00 | Strongly Not Taken | Not Taken
01 | Weakly Not Taken |Not Taken
10 | Weakly Taken Taken
11 |Strongly Taken Taken

e Used by Alpha 21164, Sun UltraSPARC, MIPS R10000, and others.
e Jim Smith, 1991

Automata

- .

“* .
o o

Autormaton Liast-Time (LT Autormaton Al Automaton A2
(2-bit Saturating Up-down Counter)

L

Automaton A3 Automaton Ad

16

Branch Correlation

17

e All these automata capture only Self-Correlation of branches.

e Branches can be correlated: (From egnrottr, SPEC92)

if (aa == 2) /* branch 1 */
aa = 0;

if (bbb == 2) /* branch 2 */
bb = 0;

if (aa !'= bb) | /* branch 3 */

ooooo

e If the conditions of branch 1 and branch 2 are TRUE, the condition of
branch 3 i1s FALSE.

Can other-branch history be used to improve prediction?

Branch Prediction with History Tables

18

Types of Pattern History Tables

Pattern History Tables can be:

e Global - one predictor for each pattern shared with all branches.

e Per-address - one predictor for each pattern for each branch.

e per-Sef - one predictor for each pattern for each set of branches.
Pattern History Table

History Register
101...001

k

Warm-up
[GPS]A[gps] naming

k i
27 entries

Static Predictor

or Automaton
IR

The Global History Adaptive Schemes

GAg

Global

Branch
History
Register
(GEHR)

Giohal
Pattern
History
Talle
{GPHT)

GAs

Glohal

Branch
History
Begider
{GEHE)

SetP(B)

X

Per-set
Pattern
History
Tables
(SPHTs)

A

GAp

Global

Branch
History
HRegister
(GEHE)

Addr(B)

X

Per-addr
Paftern
History
Tables
{PPHT:)

19

20

The Per-Set History Adaptive Schemes

SAg

SetH(B)

Per-set Global
Branch Pattern
Hidory History
Table Table
(SBHT) (GPHT)

SAs

SetH(B)

Per-set

Branch SetP(B)
Hidory -
Table

(SBHT) \

Per-set
Paftern
History
Tables
(SPHTs)

SAp

SetH(B)

Per-set

Branch Addr{(B)
Hidory -
Table

(SEHT) \

Per-addr
Pattern
Hidory
Tables
{PPHTs)

21

The Per-Address History Adaptive Schemes

PAg

Addr{B)

Peraddr Global
Branch Pattern
Higory History
Table Tale
{PEHT) {GPHT)

X7

k

PAs

Addr{B)

Per-addr

Branch
History

Table

(PEHT)

SetP(B)

N

Per-st
Pattern
History
Takles
(SPHTSY

X7

k

PAp

Addr(B)

Per-addr Por-addr
Branch Addr{B) Pattern
Hidory 8 History
Table Tables
(PRHT) (PPHTS)

7|

k

Other Two-Level Schemes

22

Other Two-Level Schemes Exist

gshare
e A single global branch history.
e A single branch history table.

e Index into branch history table 1s computed as the XOR of the branch ad-
dress and the global branch history.

gselect
e Similar to gshare.

e Index into branch history table is computed as the CONCATENATION of
the branch address and the global branch history.

others
e yags - yet another gshare

e variable history length predictors

Branch Prediction Comparisons

23

95%

90°%

85%

80°%

75%

70%

65%

Branch-Prediction Accuracy on SPECintg2

40%

l ~e

21064A (4K*)
21164 (2K*)
x586 (2K")
21066 (2K) PPC 604 (512)
.’, k R10000 (512)
ItraSparc (512)
4 <+ Cyrix M1 (256°)
AMD K5 (1K)
PPC601 R8000 (1K) PA-8000 (256)
PPC 603 Pentium (256)
Power2
R4x00
+ 960
MicroSparc-2
< PA-7x00
SuperSparc
486
R3000
+MicroSparc
HyperSparc
V800
SH
Always Always BTFN Compiler 1-bit 2-bit Two
Not Taken Taken Directed History History Level

Branch Prediction Algorithm

Source: Microprocessor Report

Limits of Hardware Dynamic Branch Prediction

Information Theoretic Viewpoint

100% —-
L

Prediction Rate

0% =
Hardware Cost

Technological Development

¢ Consider branch prediction history.
¢ This branch history contains truly independent events.

¢ You can’t predict the next white noise sample using knowledge gained from
previous samples.

¢ Branch prediction using branch history has a theoretic limit.

¢ Trends indicate most prediction information extracted.

25

Compiler-S ynthesized Branch Prediction

HPCA Conference in 1994

Conventional Branch Prediction Techniques

Hardware

Compiler

Static Uninteresting

Prediction bit, BTENT

Dynamic | 2-bit Counter, 2-Level

Unexplored, Focus of this Work

e Compiler/Static branch prediction

— Compiler controlled - compile time decision

— (+) No hardware limits - every branch has a real prediction

— (+) Low cost

— (-) Prediction cannot vary during program execution

— (-) Performs poorly for unbiased branches

¢ Hardware/Dynamic branch prediction

— Hardware controlled - state machine makes prediction

— (+) Accuracy - varles during run-time

— (-) Hardware has diminishing returns

— (-) Area, power

Hybrid/Tournament Predictors

26

e If one is good, why not two, three, etc.?

e Hybrid (or multiple-scheme) branch prediction was proposed by Scott Mc-
Farling, WRL 1993

e Different predictors are adept at capturing different branch correlation. (global
vs. local history)

e Use compiler or hardware to select predictor at run-time.

e Predictor selection mechanisms are very similar to branch predictors - pre-
dict which predictor is going to predict the branch correctly.

Predictor A Predictor B

=

% Selector

21264 Branch Prediction Logic

27

Program Global History
Counter
Global W Choice
Predict] Predict
4,09 [* 4,096
x x
2 bits 2 bits
, Local Global

Prediction

Prediction

e 35Kb of prediction information
e 2% of total die size

Final Prediction

Accuracy of Branch Prediction

28

tomcatv

95%
dodue ﬂgw
| 86%
|' | 88%
| ﬂw%

86%
espresso Y%
96%
| ———188%
o

98%

] Profile-based
m 2-bitcounter
m Tournament

94%

0% 20% 40% 60% 80%

Branch prediction accuracy

100%

Accuracy v. Size (SPEC89)

10%
@ 9%
o
5 8%
= 7%
o
& 6%
=
= 5%
(4
-

B 4%

L

& 3%

o

5 2%

o

0 1%
0%

29

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

FLASHBACK: Reduce Branch Delay

30

1. Move branch address calculation to decode stage
(from MEM stage)

2. Move branch decision up (Harder
o Bitwise-XOR, test for zero
e Only need Equality testing
e Much faster: No carry

Everything is done in decode stage!!

FLASHBACK: Reduce Branch

Delay

31

pPC

M

IFAID

v

Instruction

memory

Shift

left 2

>

Registers

ID/EX

M

EX/MEM

extend

h 4

rF v 9%

N Data

memory

Y

4

¥

M

The Branch Target Buffer

32

e The Branch Target Buffer (BTB) is used by the fetch unit to determine the

next Program Counter (PC) value.

e Some BTBs are tag-less to reduce table size and speed prediction delivery.

PC Address

Address Tag Prediction

Target Address

a .
2 entries

a-bits

= I0CT

!

N\

= and

First time a branch is encountered?

N

/

New PC Address

Another way to deal with branches

33

Eliminate them!!!

e Predication (Intel IA-64/Itanium Processor and others)
e Predication vs. Prediction

Summary

34

e Branches have personality
e Compiler/HW, Static/Dynamic
o Key ideas:

e Correlation

e Prediction accuracy

e Hardware cost
e Warm-up

e Hybrid Predictors
e Branch Target Buffers
e Predication

