Topic 10:
Pipelining

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Pipelining is Natural: Assembly Line!

Laundry Example

e Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

e Washer takes 30 minutes

BOOO

- “Folder” takes 30 minutes 0

e Dryer takes 30 minutes

« “Stasher” takes 30 minutes
to put clothes into drawers j&

Sequential Laundry

6PM 7 8 9 10 11 12 1 ZAM

| | | | |
30'30'30'30'30':'>T()'3oI | 30!
° ime
S@I° A
& g5 A

g o'k.@.k

| | | | | |
30' 30'30'30' 30 30'30 30 30

Sequential laundry takes 8 hours for 4 loads
If they learned pipelining, how long would laundry take?

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12

2 AM

I | I I]
T 3030 30 30 30 30 30 Time
| S@_A
k| O = ,_
|B 5 A
| B SR
d
e
r

e Pipelined laundry takes 3.5 hours for 4 loads!

Slow Dryers

X n O

S O Q-0

6 PM 7 8

9

10

11

12

2 AM

—]

|

] |

SE=] " K
S5 0 =
S J

&

A

l | [s —
3030 30 30 30 30 30 30 30 30 30

R

| em—

I

R

5.5 Hours. What is going on here?

[

Time

Pipelining Lessons

X n O

S DO QS0

8 9

Time

3030 30

r

1
30 30 30 30

. Pipelining doesn’t help

latency of single task, it helps
throughput of entire workload

. Multiple tasks operate

simultaneously using different
resources

. Potential speedup = Number

pipe stages

. Pipeline rate limited by

slowest pipeline stage

. Unbalanced lengths of pipe

stages reduces speedup

. Time to “fill” pipeline and

time to “drain” it reduces
speedup

. Stall for Dependences

MIPS

Pipe Stages == The Five Execution Steps

1.

Instruction Fetch

Instruction Decode and Register Fetch

Execution, Memory Address Computation, or Branch Completion
Memory Access or R-type instruction completion

Write-Back Step

Pipelining in MIPS

Program
execution ' 2 4 6 8 10 12 14 16 18
order Time T T T T T T T T —*
(in instructions)
Instruction Data
lw $1, 100($0) totch Reg ALU R Reg
< »Instruction Data
lw $2, 200($0) 8 ns fetch Reg e access Reg
-« . '
lw $3, 300($0) 3 ns lnsft(:ltl((::ltllon
Y
‘— sss _’
8 ns
Program
execution . 2 4 6 8 10 12 14
Time >
order ' ' ' ' '
(in instructions)
Instruction Data
) | |
w$2,20030) 2ns | [Reg| AW | P7? fReg
“4—¥|nstruction Data
! lw $3, 300(%$0) 2 ns fotch Regq ALU - Reg
< —p4 o -} P4 »
2 ns 2ns 2 ns 2 ns 2 ns

Can We Pipeline the Multicycle Datapath?

10

“xc==20©0

Address

Memory

Write
data

MemData

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Instruction
[15-0]

Memory

Instruction
[15-11]

Read
register 1

Read
Read data 1
register 2

Registers

Write Read
register data 2

Write
data

data

register

Sign

extend

Instruction [5-0]

»{ 0
M
u
5
1
E O
1M
_u
2 x
3

>ALU

Zero
ALU

result

ALUOut

Can We Pipeline the Unicycle Datapath?

v

Add

PC

Read
address

Instruction
[31-0]

Instruction
memory

[nstruction [25-21]

[nstruction [20-16]

[nstruction [15-11]

Instruction [15-0]

| Read
register 1 Read
Read data 1
™ register 2
. Read
Write data 2
register
Write .
data Registers

oxcZ =

Sign

extend

Instruction [5-0]

ALU

Address

Write

r|data

Read
data

Data
memory

oxcS =

Unicycle

v

>Acld

4

PC

Read
address
Instruction
[31-0]

Instruction
memory

[nstruction [25-21]

[nstruction [20-16]

[nstruction [15-11]

Instruction [15-0]

| Read
register 1 Read
Read data 1
™ register 2
‘ Read
Write data 2
register
Write .
data Registers

> Adc

Sign

extend

Instruction [5-0]

OXCZ

>ALU

ALU

! result

Zero

ALU
result

M
u

0

b

Address

Write
data

Read
data

Data
memory

oxXcZ =

Basic |dea

EX: Execute/ WB: Write back

address calculation

ID: Instruction decode/
register file read

IF: Instruction fetch MEM: Memory access

Add
4 +
Read
Address register 1 Read
o Read data 1
register 2 Zero p—ont—»
Instruction Registers Read ALU aLuy
Write ata A Read
e data 2 result # Address data
Instruction register . A
memory bata
y . Write memory
data
Write
| data

16 /\ 3
N Sign |y
‘ @

a8

-~

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H
|
|
|
|
|

Slicing of Datapath

Rectangles are pipeline registers

IF/1D

» Address

Instruction
memory

Instruction

Read
register 1

.| Read

register 2

Write
| register

Write
data

Read
data 1

Registers Reaq

data 2

EX/MEM

Address

Data
memory

Read

data

MEM/WE

Zero P -
ALU - ALy
result > >
Write
. “| data

Slicing of Datapath

Anything wrong in this picture?

IF/1D

hV4

Add

» Address

Instruc
mem

register 2

Registers
Write

| register

Write
data

EX/MEM

data 1

Read

data 2

Data
memaory

MEM/WE

3

P -

e » Address
Write

. 7| data

Corrected Datapath

Address

Instruction
memory

Address
Data
memory

Read

data

MEM/WB

IF/ID EX/MEM
< »| Read
B register 1 Read
5 Read data 1 ~~ A
£ "] register 2 Lero » —
Registers Read >/"\|l| ALU
data 2 result
Write
| data
Write
data
16 B
LY Sign
N Tlextend

Other(?) Control Signals?

Another View:

17

Slngle Cycle, Multiple Cycle vs. Pipeline

anl

Cycle 1 Cycle 2

=

]

!

>

[

=
'

= =
=
.

Singfle Cycle Implementation:

Load I Store Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9§Cyclé 10

Clk |

Multiple Cycle Implementation:

: Load

 Store R-type

Pipel:ine Implementation:

) Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Load

Ifetchl Reg I Exec I Mem I Wr

Looks good, but....

Store

Ifetch I

Reg I Exec I Mem I Wr /

R-type

Ifetchl Reg I Exec I Mem I Wr

Performance?

18

(Is it worth the pain?)

Unicycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

Multicycle Machine
10 ns/cycle x 4.6 CPI (inst mix) x 100 inst = 4600 ns

Ideal pipelined machine with 5 pipeline stages

10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns =

Unicycle Implementation Detall

19

Unpipelined 30ns 3ns
System R
—_— Comb. —|g| Delay = 33ns
Logic c| Throughput = 30MHz
|
Clock
Opl Op?2 Op3

Time

e One operation must complete before next can begin
e Operations spaced 33ns apart

3 Stage Pipeline Implementation Detalil

20

10ns 3ns 10ns 3ns 10ns 3ns

— Comb — E_> Comb — E_> Comb _»E Delqy = 39ns
Logic G Logic s Logic | Throughput = 77MHz
Clock
Opl
——-

Op?2 _

—_— e Space operations 13ns
o apart

Op4 e 3 operations executing

Time simultaneously

v

Limitation 1: Nonuniform Pipelining

Pns 3ns 15ns 3ns 10ns 3ns
R h R b R
— Com. — E — Com. . — E — COm. o | — E
Log. G Logic s Logic s

Clock Delay =18 * 3 =54 ns
oc Throughput = 55MHz

e Throughput limited by slowest stage
Delay determined by clock period * number of stages

e Must attempt to balance stages

21

Limitation 2: Deep Pipelines

Bns 3ns Bns 3ns Bns 3ns Bns 3ns Bns 3ns Bns 3ns

¢ R R R R R R
—p Ol’l’\._» E_> Ol’l’\._» E_> OI’\'\._» E_> OI’\'\._» E_> OI’\'\._» E_> OI’\'\._» E
Log. G Log. G Log. G Log. G Log. G Log. G
1 1 1 | | |

Clock

Delay = 48ns, Throughput = 128 MHz

e Diminishing returns as we add more pipeline stages
e Register delays become limiting factor
e Increased latency

e Small throughput gains

Unfortunately, there are other complications...

Pipeline Hazards

Next instruction cannot immediately follow previous
instruction in the presence of a hazard.

Three types: Structural, Control, Data

Structural Hazards
e Resource oversubscription

e Suppose we had only one memory
e In laundry, think of a washer/dryer combo unit

Pipeline Hazards

Control Hazards

e What is the next instruction?
e Branch instructions take time to compute this.

Solution 1: Stall

Program
execution
order

(in instructions)

v

Time

add $4, $5, $6

lw $3, 300($0)

2 4 10 12 14 16
T T T T
Instrucﬂon Reg ALU _ Da_ta} _. Reg
fetch access
‘ | Ingtf'ucnon Reg ALU _[)a_ta}) Reg
ns fetch access
Ingtrucnon Reg ALU _[)a_ta}) Reg
fetch access
4+
2Nns

\

Pipeline Stall (AKA Bubble)

Pipeline Hazards

Control Hazards

e What is the next instruction?

e Branch instructions take time to compute this.

Solution 2: Predict the Branch Target

Program
execution ‘ 2 4 6 12 14
order Time ' ' ' ' '
(in instructions)
. Instruction| Data .
add $4, $5, $6 totch | Re9 ALU access | Re9
Instrucyon Reg ALU ,. [)aﬁtz} | Reg
21ns fetch access
o Instruction| Data -
| lw $3, 300($0) totch | Re9 ALU access | Red

Pipeline Hazards

Control Hazards

e What is the next instruction?
e Branch instructions take time to compute this.

Solution 2: (Mis)Predict the Branch Target

Program
execution - 2 4 6 8 10 12 14
order Time T T T | | l I
(in instructions)

fetch access

Instruction| -, Data .
¥ feorch Reg ALU access Reg
2 ns
Instruction| Data .

v fetch Reg ALU access Reg

Pipeline Hazards

Control Hazards

e What is the next instruction?
e Branch instructions take time to compute this.

Solution 3: Delayed Decision (Used in MIPS)

Program
execution | 2 4 6 8 10 12 14
order Time | | | T | | |
(in instructions)

Instruction Data

fetch Reg ALU access Reg

< flsteton)Heegl | P kg | 50% Fill Rate

(Delayed branch slot) 2 ns ’ -
lw $3, 300($0) '”Sft;‘tf;'on Reg| ALU aEcaetis Reg
\ /
R
2 ns

More about Branch Prediction/Delayed Branching Later...

Pipeline Hazards

Data Hazards

Value from prior instruction is needed before write back

Typical Instruction (new representation):

Time I I I I I

add $s0, $t0, $t1 | IF |—L ID SEX ——MEMI— WB |

Pipeline Hazards

Data Hazards

Value from prior instruction is needed before write back

Data Hazard:

Solution: Bypassing

Program
execution 2 4 6 8 10
order Time i I i I i >
(in instructions)
add $tO, $t1 | IF
s sub $t2, $t3 WB

Pipeline Hazards

Data Hazards

Value from prior instruction is needed before write back

Load-Use Data Hazard: Options: Delayed Load or Bubble

. 2 4 6 8 10 12 14
Program Time l l T T T l I >
execution
order
(in instructions)
Iw 20($t1) | IF |—H D >EX MEM{~s— WB

- - r— T
v sub $t2, $t3 IE |:‘| D MEM WEB ,
b, ;]]

Summary and Real Stuff

32

Summary

e Pipelining is a fundamental concept in computers/nature
e Multiple instructions in flight
e Limited by length of longest stage, Latency vs.Throughput

e Hazards gum up the works

Real Stuff

o MIPS I instruction set architecture made pipeline visible
(delayed branch, delayed load)

e More performance from deeper pipelines, parallelism to
a point
e Pentium 4 has 22 pipe stages!

Review: Pipelined Datapath

\/

N \ IF/ID ID/EX EX/MEM MEM/WE
>.»"\|:I'I \‘
4 — / Id ooult >
Shift
eft 2

= .| Read
#| Address B register 1 Read \
= Read data 1 =
nstruction = "'!:l"*'-'llé S P
memor ™ Registers Read ALU LI
emory n P > O A =¥:Te
¥ data 2 > Address Read
data
u Data
Wri X memory
data 1
Write
dat:
16
LY
hY

Note that all R-Type Instructions have a NULL stage!

Review: Pipeline Hazards

Structural Hazards

Resource oversubscription:

IF/1D ID/EX EX/MEM MEM/WB

Read
=1 register 1 Read
= Read data 1
regis -
—] Req
IF\I |k l 1d Read
ata data
Data
:mol

Review: Pipeline Hazards

Control Hazards

e What is the next instruction?

e Branch instructions take time to compute this.

Stall, Predict, or Delay:

Program
execution

order

(in instructions)

v

add $4, $5, $6

lw $3, 300($0)

Time

10

Instruction
Rec Rec
fetch g g
‘ I Instruction Data
2ns fetch access

\

Instruction

Reg

Data
access

b E—

Pipeline Stall - only 1 cycle/stage delay...

Review: Pipeline Hazards

Control Hazards

e What is the next instruction?
e Branch instructions take time to compute this.

Delayed Decision (Used in MIPS):

Program
execution | 2 4 6 8 10 12 14
order Time | | | | | | |
(in instructions)

Instruction Data

fetch Reg ALU access Reg

< flsteton)Heegl | P kg | 50% Fill Rate

(Delayed branch slot) 2 ns ’
lw $3, 300($0) '”’Tgﬁg;’on Reg| ALU aECaeti% Reg
\ /
R
2 ns

More about Branch Prediction/Delayed Branching Later...

Review: Pipeline Hazards

Data Hazards

Value from prior instruction is needed before write back

Data Hazard:

Solution: Bypassing

Program
execution 2 4 6 8 10
order Time i I i | i >
(in instructions)
add $tO, $t1 | IF
s sub $t2, $t3 WB

Review: Pipeline Hazards

Data Hazards

Value from prior instruction is needed before write back

Load-Use Data Hazard: Options: Delayed Load or Bubble

. 2 4 6 8 10 12 14
Program Time I I I T I 1 | >
execution
order
(in instructions)
lw 20($t1) | IF —O D SEX MEMs— WB%

~ . g M r-_. _-—-\l
v sub $t2, $t3 IF — ID 497[“5[\/] WB |
- —J

Compiler Avoidance of Load Stalls

40

gcc

spice

tex

B scheduled

B unscheduled

25%

65%

0%

20% 40% 60%
% loads stalling pipeline

80%

Pipeline Control

41

PC

IF/1D

Add

V

Address

Y

Instruction
memory

Instruction

Read

register 1

Read

register 2

| Write

register

\."/'rité'
data

Read
data 1

Reqgisters Read

data 2

» 0

Instruction
[15-0] 16

Instruction
[20-16]

Sign
extend

M
u

EX/MEM

> AU A

result

Instruction
[15-11]

Address Read

data
Data

memory
Write

data

MEM/WB

Pipeline Control

42

e Control is divided into 5 stages
e Signal values same as unicycle case!
e Timing is different...

MEM/WE

IF/ID ID/EX EX/MEM
\dd
4
£ Read
b Address = !
B Read
nstruc =
= — I
memn v A
=k \ddre
—
Instr
[15-0]
Instruct
[20-16]
Instructio
[15-11]

Pipeline Control

43

e Signal values same as unicycle case!
e Timing is different...
e Simplest method: Extend pipe registers

Instruction

IF/1D ID/EX EX/MEM

MEM/WB

Pipeline Control

44

PC

ID/EX

‘UEX /MEM

0 S
M -
u / \
. { yll
1 ; | —
> |
| f
',,’ ,I'l _—
N IF/ID __/
>Add 2 _
4 —
= Read
» eSS = | register 1
» Address - q Read .
5 | Read data 1
Instruction = register 2
memory " Registers Reaq
’ Write data 2
| register
\Aivi
o Write
data

Add

>Ad(l result
Shift
left 2

>ALU ALU

> 0
M result
u
X
1

Hl/l EM/WB

,,/':
A - Read
es
Address data "
Data
memory
.| Write
data

h 4

Instruction f \
[15-0] 16 § | ,
N LY 'JI l[i
\ {
Instruction \ /
[20-16] N
»{0 ‘)
M ——
Instruction U
[15-11] 1X

O xecz= =

What About Data Hazards?

¥

Time (in clock cycles)

Value of CC1 cC?2 CC3 CC4 CC5H cC 6 cc7 CC8 CC9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program
execution

order
(in instructions)

sub $2, $1, $3 | IM Reg|[| -I: DM

.....

and $12, $2, $5 M = 1= S pM B | Rec
{Reg[— | r)

or $13, $6, M | Hhpeql | —I:DM— L Reg

add $14, $2, M (H o T DM |- (Reg

sw $15, 100 M (o > DM Reg

45

What About Data Hazards?

46

Time (in clock cycles)

CC1 CC2 CC 3 CC4 CC5 cCo6

Value of register $2: 10 10 10 10 10/-20 -20
Value of EX/MEM : X X X -20 X X
Value of MEM/WB : X X X X -20 X

Program
execution order
(in instructions)

sub $2, $1, $3 | IM Reg| | —I: DM

and $12, $2, $5 M < X [] DM |H Reg
or $13, $6, M — - e —I:DM—

add $14, $2, M — 'E:

sw $15, 100 M 5

v

cC9

-20
X
X

cc7 CcC8
-20 -20
X X
X X
— Reg
—|: DM {— Reg
DM

Reg

Forwarding Unit

47

ID/EX EX/MEM MEM/WB
— —
M
—— u
— X
Registers
> ALU ==
— — .
Data
g S memory | |
u
> >
Rs
Rt L >
Rt M "
Rd U N Y EX/ MEM.Reglbteer'
X
N 3 MEM/WB.RegisterRd _‘
s
>
&

How does the Forwarding Unit know when to forward?

Forwarding Unit

48

ID/EX EX/MEM MEM/WB
— —]
M
— > U .
—] X
—>
Registers ./
>ALU =
> [l >
M .
oy . Data L
. memory M
= u
./ X
Rs
R —
R
o o M . EX/MEM RegisterRd | |
|| :\XJ L | L |
> MEM/WB.RegisterRd

EX Hazard:

EX/MEM.RegWrite AND EX/MEM.RegisterRd !'= 0 AND EX/
MEM.RegisterRd == ID/EX.RegisterReadRs(Rt)

MEM Hazard very similar, but prefer MEM over WB value

What About Load-Use Stall?

e Forwarding can’t save the day
* Need to introduce stall in hardware or compiler

Time (in clock cycles) >
Program CC 1 CC2 CC3 CcC4 CC5 CC6 cC7 CC8 CC9
execution
order
(in instructions)]]] B . '
w $2, 20(81) | IM ﬂi Reg[97 ol | Time Travel Necessary!

M g --— M T 1
and $4, $2, $5 M (— n —|: DM {—
or $8, $2, $6 M — S <D— —l: DM (< I Reg

add $9, , IM }— J:: DM 4 [Reg
i <D* | I

sit $1, $6, $7 IM (— HiReg|[|

DM Reg

v

What About Load-Use Stall?

Program Time (in clock cycles)
execution CC1 CcC?2 CC3 CC4 CC5 CC6 cCc7 cC8 cC9 CcC10
order
(in instructions) - - .
-1
lw $2, 20($1) IM ﬂl Reg [] % DM |
|| | l- i
. (R I g
and $4, $2, $5 IM J:t — o DM
? L— - | I
= I;: - - .
or $8, $2, $6 IM IM E I— -[DM——Reg
— bubble —‘> — — —
e
add $9, $4, M — o ‘97 DM | || Reg

slt $1, $6, $7 M [[SReg

50

%47 .

EH

Reg

Hazard Detection Unit

Nop is all zeros!!

1!

EX/MEM

: MEM/WB

IFAID

M

Instruction
|

(x<

Registers

_ Data
memory

memory

X

v

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt

RY 1 Im EX/MEM.RegisterRd

IF/ID.RegisterRd Rd ;‘ v
_ ID/EX.RegisterRt Rl | N\ —

P MEM/WB.RegisterRd

r 3 h 4 r

How does the Hazard Detection Unit know when to forward?

51

Hazard Detection Unit

52

— V/EY
ey ID/EX
EX/MEM
MEM/WB
IFAID
> - _/_\
P M
S —* U >
; > | X
B Registers A .
PC Instruction | | = » >ALI,I mE-;,;TA L]
memory
Y R e
= M
o U >
X
A
IF/ID.RegisterRs
IF I[i'.F\'--u]iumRt . 7 ~
IF/ID.ReqisterRt . Rt > M EX ['-/1E['-1‘1.F<f'l;|i‘\ll'IF\’IZI
IF/ID.RegisterRd Rd u >
: N o x
T)/EX.RegisterR de _/ — _
ID7EX RegisterRt Er MEM/WB.RegisterRd

M
u
X

ID/EX.MemRead AND

(ID/EX.RegisterRt == IF/ID.RegisterRs OR ID/
EX.RegisterRt == IF/ID.RegisterRt)

What About Control Hazards?

(Predict Not-Taken Machine)

Program Time (in clock cycles) >
execution CC 1 CC 2 CC 3 CC 4 CC5 CC 6 cC 7 CC 8 CC9
order

(in instructions)

44 and $12, $2, $5 IM |— Reg|] %7 DM L {Reg State Change?

48 or $13, $6, $2 IM (—H HHReg| | %— -l:[)l\/l— —Reg

52 add $14, $2, $2 IM [H-Reg[| %— -|: DM
72 lw $4, 50($7) -HReg| | %— L DM T‘H‘ Reg
Y

We are OK, as long as we squash. Can we reduce delay?

-
l

l

1

Reduce Branch Delay

54

1. Move branch address calculation to decode stage
(from MEM stage)

2. Move branch decision up (Harder
o Bitwise-XOR, test for zero
e Only need Equality testing
e Much faster: No carry

Everything is done in decode stage!!

What About Control Hazards?

f L
| |"_
_.}" J
M § ID/EX
u ‘7’
X ~
— I EX/MEM
ll |I —
N | M ,
3 s /W
". ||‘ - 0 X 7|] MEM/WB
IFAID ' " > B
v — -+
+ 2 >
4 Shift
left 2 N
M
> —>] Ll &
= | x
Registers ./
Instruction . ' 1 >ALII N Data
memory] ~ i memory
P M
-] LI b
| x
m (U .
|
Sign N)
extend
& » M | N .
u > >
S— . * X L - h
N~ —

What About Control Hazards?

—
L [-‘.,l] L |[) ,EX

u

| X
M
P u
0 X

1
- [FAID > +
>+ ,

4 = Shift]
left 2 ™\
M

J
‘\Ib
L 4

—q —>] Ll &
@ > X
Registers NS
B [e RO ~ =
Y ,—\
& M
[S &
] ¥
../

rF vy ¥

4

L 4
-
k
>

Review: Exceptions

58

e What happens if instruction encoding is not valid?
o What about arithmetic overflow?

Exception

An event that disrupts program execution.

When an exception occurs:

e Save the current PC in the EPC
e (Cause = 0 for Undefined Instruction, 1 for Overflow

e Jump to the OS at C0000000,, (not vectored)

Review: Multicycle Exception Handling

59

PC

-k

Op
(5-0] .
10
Y
" Jump > 1?’:
Instruction [25-0] address [31-0) X
> >
Instruction €0 00 00 00 >3
(31-26]
0
M Instruction a| Read
u Address [25-21] register 1
X
1 Memory Instruction _| Read iRea;l
[20-16] - | register 2 data
MemData ju _ 0 _ Registers ALUOU gy EPC
Instruction M Write Read
. (15-0] Instruction | Y register gata 2
rte . 6 X
data Instruction [15-11] N Write
register data
Instruction 0 »{ 0
[15-0] 4
u] Cause
X
Memory > 1 > 1
data
register O
Instruction [5-0]
"

Exceptions in Pipelines

60

e Exception must appear to programmer/OS as it would

in unicycle/multicycle

e Must squash in-flight instructions after excepting inst
e Looks a lot like a branch...

Don’ t Forge
EPC and
Causel!ll

Pipeline Exception Handling

—
3 ID/EX
EX/MEM
- MEM/WB
Cause
{ID
IFJIC +
o Except
PC
: | m
= U >
Registers :
o - Jata
Instruction >ALll Da
P - L - o D) 24
memory memory
N o Im
> U &
Sign .
extend :
> | o M |
u ' o
. N I
G

Look at this mess!!!

IF.Flush ID Flush EX.Flush

Hazard

f 3

tection

\ ‘ unit ¥
! - (v]
40000040 u : M
X !
w (‘ EX/MEM
. R
» Control WB
. IiA'EM/WB
) Cause W
IF/ID > M B
+
Y _— _— _—
+ & = _| Except
PC
Shift

left 2

Registers

PC—| _| Instruction

>ALU - Data

memory memaory

) 4

h 4

-
) 2 3 ‘FO
k4 r
I |
==
¥

Sign .
extend

C

h 4
A

Forwarding

unit

h A

Precise vs. Imprecise Exceptions

63

Precise Exceptions

o EPC has value of excepting instruction PC

e Easy for OS to handle
e We have been looking at precise exception machine

Imprecise Exceptions

e Reduce pipeline complexity by putting current PC or
other approximation into EPC

e OS figures it out

Summary

64

e Pipelining is a fundamental concept in computers/nature
e Multiple instructions in flight
e Limited by length of longest stage, Latency vs.Throughput

e Hazards gum up the works
e Pipeline Control can be messy!

