
1

Topic 10:
Pipelining

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Pipelining is Natural: Assembly Line!

Laundry Example
•  Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

•  Washer takes 30 minutes

•  Dryer takes 30 minutes

•  “Folder” takes 30 minutes

•  “Stasher” takes 30 minutes
to put clothes into drawers

A B C D

3

Sequential Laundry

Sequential laundry takes 8 hours for 4 loads
If they learned pipelining, how long would laundry take?

30 T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

4

Pipelined Laundry: Start work ASAP

•  Pipelined laundry takes 3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

5

30

Slow Dryers

5.5 Hours. What is going on here?

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30 30 30 30

6

Pipelining Lessons

1.  Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

2.  Multiple tasks operate
simultaneously using different
resources

3.  Potential speedup = Number
pipe stages

4.  Pipeline rate limited by
slowest pipeline stage

5.  Unbalanced lengths of pipe
stages reduces speedup

6.  Time to “fill” pipeline and
time to “drain” it reduces
speedup

7.  Stall for Dependences

6 PM 7 8 9
Time

B
C
D

A
30 30 30 30 30 30 30

T
a
s
k

O
r
d
e
r

7

1.  Instruction Fetch

2.  Instruction Decode and Register Fetch

3.  Execution, Memory Address Computation, or Branch Completion

4.  Memory Access or R-type instruction completion

5.  Write-Back Step

MIPS
Pipe Stages == The Five Execution Steps

9

Pipelining in MIPS

IDEAL?

10

Can We Pipeline the Multicycle Datapath?

Can We Pipeline the Unicycle Datapath?

Unicycle

How do we split the datapath into stages?

Basic Idea

Slicing of Datapath

Rectangles are pipeline registers

Slicing of Datapath

Anything wrong in this picture?

Corrected Datapath

Other(?) Control Signals?

17

Another View:
Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem Wr Store

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem Wr R-type

Cycle 1 Cycle 2

Looks good, but….

18

Performance?
(Is it worth the pain?)
Unicycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

Multicycle Machine
10 ns/cycle x 4.6 CPI (inst mix) x 100 inst = 4600 ns

Ideal pipelined machine with 5 pipeline stages
10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

19

Unicycle Implementation Detail

Comb.
Logic

R
E
G

30ns 3ns

Clock

Delay = 33ns
Throughput = 30MHz

Time

Unpipelined
System

Op1 Op2 Op3
• • •

•  One operation must complete before next can begin
•  Operations spaced 33ns apart

20

3 Stage Pipeline Implementation Detail

•  Space operations 13ns
apart

•  3 operations executing
simultaneously

R
E
G

Clock

Comb.
Logic

R
E
G

Comb.
Logic

R
E
G

Comb.
Logic

10ns 3ns 10ns 3ns 10ns 3ns

Delay = 39ns
Throughput = 77MHz

Time

Op1

Op2

Op3

• • •

Op4

21

Limitation 1: Nonuniform Pipelining

Clock

R
E
G

Com.
Log.

R
E
G

Comb.
Logic

R
E
G

Comb.
Logic

5ns 3ns 15ns 3ns 10ns 3ns

Delay = 18 * 3 = 54 ns
Throughput = 55MHz

•  Throughput limited by slowest stage
Delay determined by clock period * number of stages

•  Must attempt to balance stages

22

Limitation 2: Deep Pipelines

•  Diminishing returns as we add more pipeline stages
•  Register delays become limiting factor

•  Increased latency
•  Small throughput gains

Unfortunately, there are other complications…

Delay = 48ns, Throughput = 128MHz Clock

R
E
G

Com.
Log.

5ns 3ns

R
E
G

Com.
Log.

5ns 3ns

R
E
G

Com.
Log.

5ns 3ns

R
E
G

Com.
Log.

5ns 3ns

R
E
G

Com.
Log.

5ns 3ns

R
E
G

Com.
Log.

5ns 3ns

23

Pipeline Hazards

 Next instruction cannot immediately follow previous
instruction in the presence of a hazard.

Three types: Structural, Control, Data

Structural Hazards
•  Resource oversubscription
•  Suppose we had only one memory
•  In laundry, think of a washer/dryer combo unit

Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Solution 1: Stall

Pipeline Stall (AKA Bubble)

Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Solution 2: Predict the Branch Target

Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Solution 2: (Mis)Predict the Branch Target

Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Solution 3: Delayed Decision (Used in MIPS)

More about Branch Prediction/Delayed Branching Later…

50% Fill Rate

Pipeline Hazards
Data Hazards

Value from prior instruction is needed before write back

Typical Instruction (new representation):

Pipeline Hazards
Data Hazards

Value from prior instruction is needed before write back

Data Hazard:

Solution: Bypassing

Pipeline Hazards
Data Hazards

Value from prior instruction is needed before write back

Load-Use Data Hazard:

Options: Delayed Load or Bubble

32

Summary and Real Stuff

Summary
•  Pipelining is a fundamental concept in computers/nature

•  Multiple instructions in flight
•  Limited by length of longest stage, Latency vs.Throughput

•  Hazards gum up the works

Real Stuff
•  MIPS I instruction set architecture made pipeline visible

(delayed branch, delayed load)
•  More performance from deeper pipelines, parallelism to

a point
•  Pentium 4 has 22 pipe stages!

33

Review: Pipelined Datapath

Note that all R-Type Instructions have a NULL stage!

Review: Pipeline Hazards
Structural Hazards

Resource oversubscription:

Review: Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Stall, Predict, or Delay:

Pipeline Stall - only 1 cycle/stage delay…

Review: Pipeline Hazards
Control Hazards

•  What is the next instruction?
•  Branch instructions take time to compute this.
Delayed Decision (Used in MIPS):

More about Branch Prediction/Delayed Branching Later…

50% Fill Rate

Review: Pipeline Hazards
Data Hazards

Value from prior instruction is needed before write back

Data Hazard:

Solution: Bypassing

Review: Pipeline Hazards
Data Hazards

Value from prior instruction is needed before write back

Load-Use Data Hazard:

Options: Delayed Load or Bubble

40

Compiler Avoidance of Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

41

Pipeline Control

42

Pipeline Control

•  Control is divided into 5 stages
•  Signal values same as unicycle case!
•  Timing is different…

43

Pipeline Control

•  Signal values same as unicycle case!
•  Timing is different…
•  Simplest method: Extend pipe registers

44

Pipeline Control

45

What About Data Hazards?

46

What About Data Hazards?

47

Forwarding Unit

How does the Forwarding Unit know when to forward?

48

Forwarding Unit

EX Hazard:
EX/MEM.RegWrite AND EX/MEM.RegisterRd != 0 AND EX/

MEM.RegisterRd == ID/EX.RegisterReadRs(Rt)

MEM Hazard very similar, but prefer MEM over WB value

49

What About Load-Use Stall?
 •  Forwarding can’t save the day
•  Need to introduce stall in hardware or compiler

Time Travel Necessary!

50

What About Load-Use Stall?

51

Hazard Detection Unit

How does the Hazard Detection Unit know when to forward?

Nop is all zeros!!

52

Hazard Detection Unit

ID/EX.MemRead AND
(ID/EX.RegisterRt == IF/ID.RegisterRs OR ID/

EX.RegisterRt == IF/ID.RegisterRt)

53

What About Control Hazards?
(Predict Not-Taken Machine)

Architectural
State Change?

We are OK, as long as we squash. Can we reduce delay?

54

Reduce Branch Delay

1.  Move branch address calculation to decode stage
(from MEM stage)

2.  Move branch decision up (Harder
•  Bitwise-XOR, test for zero
•  Only need Equality testing
•  Much faster: No carry

Everything is done in decode stage!!

55

What About Control Hazards?

56

What About Control Hazards?

57

58

Review: Exceptions

•  What happens if instruction encoding is not valid?
•  What about arithmetic overflow?

Exception
 An event that disrupts program execution.

When an exception occurs:
•  Save the current PC in the EPC
•  Cause = 0 for Undefined Instruction, 1 for Overflow
•  Jump to the OS at C000000016 (not vectored)

59

Review: Multicycle Exception Handling

60

Exceptions in Pipelines

•  Exception must appear to programmer/OS as it would
in unicycle/multicycle

•  Must squash in-flight instructions after excepting inst
•  Looks a lot like a branch…

Don’t Forget
EPC and
Cause!!!

61

Pipeline Exception Handling

62

Look at this mess!!!

63

Precise vs. Imprecise Exceptions

Precise Exceptions
•  EPC has value of excepting instruction PC
•  Easy for OS to handle
•  We have been looking at precise exception machine

Imprecise Exceptions
•  Reduce pipeline complexity by putting current PC or

other approximation into EPC
•  OS figures it out

64

Summary

•  Pipelining is a fundamental concept in computers/nature
•  Multiple instructions in flight
•  Limited by length of longest stage, Latency vs.Throughput

•  Hazards gum up the works
•  Pipeline Control can be messy!

