
1

Topic 9:
Microprogramming and Exceptions

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Program Notes

•  HW #2 due October 26th at 5PM – No Late Days.

•  Project #1 due Novemer 11th at 5PM

•  Midterm October 28th In Class
•  Closed book/notes
•  One Two-sided “cheat sheet” allowed

5

Review

Graphical
Specification
of FSM

7

FSM Implementation

How big must the
 state register be?

8

For Our Machine…

PLA Implementation
 Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

AND-Plane

OR-Plane

ROM = �Read Only Memory� - values fixed ahead of time

A ROM can be used to implement a truth table
•  If address is m-bits, 2m entries in the ROM
•  Outputs are the n-bits of data at that address
•  Consider m the �height� and n the �width�

n = control wire bits + next state bits
m = opcode bits + current state bits

ROM Implementation

ROM

m n

Addr Data
00 0101
01 1101
10 1001
11 0001

ROM Implementation for MIPS

•  How many inputs are there?
 6 bits for opcode, 4 bits for state = 10 address lines
 (210 = 1024 different addresses)

•  How many outputs are there?
 16 datapath-control bits, 4 state bits = 20 bits

•  ROM is 210 x 20 = 20K bits (a rather unusual size)

•  Wasteful. A full truth table!

Consider: opcode is often ignored

ROM vs PLA

Factor ROM Table
•  4 bits for the 16 control signals, 24 x 16 bits of ROM
•  10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
•  Total: 4.3K bits of ROM

PLA is even smaller!
•  can take into account �don't cares�
•  can share product terms

Size is:
(#inputs)(#product-terms) + (#outputs)(#product-terms)
For this example = (10 x 17) + (20 x 17) = 460 PLA cells

13

Full MIPS

Full MIPS: More complex control
•  Over 100 instructions
•  1 to 20 clock cycles

X86: Forget about it!!!

With thousands of states, mistakes likely to happen

Solution: Treat state machine as a program!

 (We�re experts on bugs in programs…)

Microprogramming
Another Implementation Style

•  The �next state� is often current state + 1
•  The �next instruction� is often current instruction + 1

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p[

5–
0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

BWrite

Graphical
Specification
of FSM

Address Select Logic
 Dispatch ROM 1

Op Opcode name Value
000000 R-format 0110
000010 jmp 1001
000100 beq 1000
100011 lw 0010
101011 sw 0010

Dispatch ROM 2
Op Opcode name Value

100011 lw 0011
101011 sw 0101

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

Microprogramming

What are the �microinstructions� ?

Microprogramming

•  Each state is a microinstruction
•  Signals specified symbolically - don�t need to deal with 1/0�s
•  Labels for sequencing - don�t need to set addresses manually

Will two implementations of the same architecture
have the same microcode?

What would a microassembler do?

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Step 1: Instruction Fetch

IR = Memory[PC];

PC = PC + 4;

Microinstruction Format

Field name Value Signals active Comment
Add ALUOp = 00 Cause the ALU to add.

ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

Maximally vs. Minimally Encoded Control Signals

•  No encoding:
•  1 bit for each datapath control signal
•  Faster, requires more memory (logic)
•  Used for Vax 780 — an astonishing 400K of memory!

•  Lots of encoding:
•  Send control codes through more logic to get control signals
•  Uses less memory, slower

•  Historical context:
•  Too much logic to put on a single chip with everything else
•  Use a ROM (or even RAM) to hold the microcode
•  It�s easy to add new instructions - too easy…

22

To Quote Intel…

 The Pentium(R) Pro processor and Pentium(R) II
processor may contain design defects or errors known
as errata that may cause the product to deviate from
published specifications. Many times, the effects of the
errata can be avoided by implementing hardware or
software work-arounds, which are documented in the
Pentium Pro Processor Specification Update and the
Pentium II Processor Specification Update. Pentium Pro
and Pentium II processors include a feature called
"reprogrammable microcode", which allows certain
types of errata to be worked around via microcode
updates. The microcode updates reside in the system
BIOS and are loaded into the processor by the system
BIOS during the Power-On Self Test, or POST.

Microcode Trade-offs

•  Advantages:
•  Easy to design and write
•  Design architecture and microcode in parallel
•  Potentially easier to change since values are in memory
•  Can emulate other architectures

(IBM was big on this: 7090à360)

•  Disadvantages:
•  May be slower than optimized logic
•  May be less compact as well

Control Specification Implementation Summary

25

26

Pentium Pro and Later
Microcode à Micro-Ops

27

28

Exceptions

In our simple MIPS machine:
•  What happens if instruction encoding is not valid?
•  What about arithmetic overflow?

Exception
 An unscheduled event that disrupts program execution.

Interrupt

 An external unscheduled event that disrupts program
execution.

29

What Happens?

When an exception occurs:
•  Save the current PC in the EPC (Exception PC)
•  Store the cause in the Cause register
•  Jump to the OS, some pre-specified address (possibly

vectored)
OS can examine Cause and EPC

EPC and Cause?

30

What Happens?
In our case

When an exception occurs:
•  Save the current PC in the EPC
•  Cause = 0 for Undefined Instruction, 1 for Overflow
•  Jump to the OS at C000000016 (not vectored)

31

Exceptions

32

Exceptions

33

Exceptions

34

Summary, Next Time, and Now

Summary
•  Control can be hardwired, microcoded, or both
•  Exceptions complicate things

Next Time
•  Pipelining next time

