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Topic 9:   
Microprogramming and Exceptions 

COS / ELE 375 
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Program Notes 
 

 
•  HW #2 due October 26th at 5PM – No Late Days. 

•  Project #1 due Novemer 11th at 5PM 

•  Midterm October 28th In Class 
•  Closed book/notes 
•  One Two-sided “cheat sheet” allowed 
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Review 
 



Graphical 
Specification 
of FSM 
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FSM Implementation 
 

How big must the 
 state register be? 
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For Our Machine… 
 



PLA Implementation 
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ROM = �Read Only Memory� - values fixed ahead of time 
 
A ROM can be used to implement a truth table 
•  If address is m-bits, 2m entries in the ROM 
•  Outputs are the n-bits of data at that address 
•  Consider m the �height� and n the �width� 
 

n = control wire bits + next state bits 
m = opcode bits + current state bits 

ROM Implementation 
 

ROM 

m n 

Addr Data 
00 0101 
01 1101 
10 1001 
11 0001 

ROM Implementation for MIPS 
 

•  How many inputs are there? 
 6 bits for opcode, 4 bits for state = 10 address lines 
 (210  = 1024 different addresses) 

•  How many outputs are there? 
 16 datapath-control bits, 4 state bits = 20 bits 

 
•  ROM is 210 x 20 = 20K bits    (a rather unusual size) 

 
•  Wasteful.  A full truth table!   

Consider: opcode is often ignored 



ROM vs PLA 
 
Factor ROM Table 
•  4 bits for the 16 control signals, 24 x 16 bits of ROM 
•  10 bits tell you the 4 next state bits, 210 x 4 bits of ROM 
•  Total:  4.3K bits of ROM 

PLA is even smaller! 
•  can take into account �don't cares� 
•  can share product terms 

  
Size is:  
(#inputs)(#product-terms) + (#outputs)(#product-terms) 
For this example = (10 x 17) + (20 x 17) = 460 PLA cells 
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Full MIPS 
 

Full MIPS: More complex control 
•  Over 100 instructions 
•  1 to 20 clock cycles 

X86: Forget about it!!! 
 
With thousands of states, mistakes likely to happen 
 
Solution: Treat state machine as a program!   

  
 (We�re experts on bugs in programs…) 

Microprogramming 
Another Implementation Style 

•  The �next state� is often current state + 1 
•  The �next instruction� is often current instruction + 1 
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Graphical 
Specification 
of FSM 

Address Select Logic 
 Dispatch ROM 1 

Op Opcode name Value 
000000 R-format 0110 
000010 jmp 1001 
000100 beq 1000 
100011 lw 0010 
101011 sw 0010 

Dispatch ROM 2 
Op Opcode name Value 

100011 lw 0011 
101011 sw 0101 

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

Microprogramming 
 

What are the �microinstructions� ? 



Microprogramming 
 

•  Each state is a microinstruction 
•  Signals specified symbolically - don�t need to deal with 1/0�s 
•  Labels for sequencing - don�t need to set addresses manually 

Will two implementations of the same architecture  
have the same microcode? 

 

What would a microassembler do? 

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Step 1: Instruction Fetch 
 

IR = Memory[PC]; 
 

PC = PC + 4; 

Microinstruction Format 
 

Field name Value Signals active Comment
Add ALUOp = 00 Cause the ALU to add.

ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.



Maximally vs. Minimally Encoded Control Signals 
 

•  No encoding: 
•  1 bit for each datapath control signal 
•  Faster, requires more memory (logic) 
•  Used for Vax 780 — an astonishing 400K of memory! 

•  Lots of encoding: 
•  Send control codes through more logic to get control signals 
•  Uses less memory, slower 

•  Historical context: 
•  Too much logic to put on a single chip with everything else 
•  Use a ROM (or even RAM) to hold the microcode 
•  It�s easy to add new instructions - too easy… 
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To Quote Intel… 
 

 The Pentium(R) Pro processor and Pentium(R) II 
processor may contain design defects or errors known 
as errata that may cause the product to deviate from 
published specifications. Many times, the effects of the 
errata can be avoided by implementing hardware or 
software work-arounds, which are documented in the 
Pentium Pro Processor Specification Update and the 
Pentium II Processor Specification Update. Pentium Pro 
and Pentium II processors include a feature called 
"reprogrammable microcode", which allows certain 
types of errata to be worked around via microcode 
updates. The microcode updates reside in the system 
BIOS and are loaded into the processor by the system 
BIOS during the Power-On Self Test, or POST.  

Microcode Trade-offs 
 

•  Advantages: 
•  Easy to design and write 
•  Design architecture and microcode in parallel 
•  Potentially easier to change since values are in memory 
•  Can emulate other architectures  

(IBM was big on this: 7090à360) 

•  Disadvantages: 
•  May be slower than optimized logic 
•  May be less compact as well 



Control Specification Implementation Summary 
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Pentium Pro and Later 
Microcode à Micro-Ops 
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Exceptions 
 

In our simple MIPS machine: 
•  What happens if instruction encoding is not valid? 
•  What about arithmetic overflow? 

Exception 
 An unscheduled event that disrupts program execution. 

 
Interrupt 

 An external unscheduled event that disrupts program 
execution. 
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What Happens? 
 

When an exception occurs: 
•  Save the current PC in the EPC (Exception PC) 
•  Store the cause in the Cause register 
•  Jump to the OS, some pre-specified address (possibly 

vectored) 
OS can examine Cause and EPC 

EPC and Cause? 
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What Happens? 
In our case 

When an exception occurs: 
•  Save the current PC in the EPC 
•  Cause = 0 for Undefined Instruction, 1 for Overflow 
•  Jump to the OS at C000000016 (not vectored) 
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Exceptions 
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Exceptions 
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Exceptions 
 

34 

Summary, Next Time, and Now 
 

Summary 
•  Control can be hardwired, microcoded, or both 
•  Exceptions complicate things 

Next Time 
•  Pipelining next time 


